Python图像处理之图像拼接

一、前言

图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。

二、特征点匹配

特征点具有局部差异性

动机:特征点具有局部差异性

图像梯度

Harris矩阵


以每个点为中心取一个窗口,窗口大小为55或者77,如果这个点具有差异性,往周围任意方向移动,周围的环境变化都是会比较大的,如果满足这个特性,我们就认为这个特征点具有明显的局部差异性。在工事中,I表示像素,如果是 彩色图像就是RGB,灰色图像就是灰度。(u,v)表示方向。然后对上式进行一阶泰勒展开。
Harris矩阵H的特征值分析:

矩阵特征值反应了两个垂直方向的变化情况,一个事变化最快的方向,一个事变化最慢的方向

兴趣点位于光滑区域,不是特征点

兴趣点位于边缘区域

兴趣点位于角点区域

所以检测特征的任务转化为计算Harris矩阵,判断特征值大小。

在实际操作中,很少通过计算特征值来判断,因为计算特征值计算量比较大,取而代之的是Harris角点准则。

三、匹配错误的特征点干扰

在进行图像匹配过程中,如果图像的噪声太大,就会使得特征点的匹配发生了偏差,匹配到了错误的点,这种不好的匹配效果,会对后面的图像拼接产生很大的影响,如下图

四、消除干扰

为了进一步提升匹配精度,可以采用随机样本一致性(RANSAC)方法。

因为我们是使用一幅图像(一个平面物体),我们可以将它定义为刚性的,可以在pattern image和query image的特征点之间找到单应性变换(homography transformation )。使用cv::findHomography找到这个单应性变换,使用RANSAC找到最佳单应性矩阵。(由于这个函数使用的特征点同时包含正确和错误匹配点,因此计算的单应性矩阵依赖于二次投影的准确性)

五、RANSAC进行图像匹配

RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。

RANSAC的基本假设是:

(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。

局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。

RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。

RANSAC原理

OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h3=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对。

其中(x,y)表示目标图像角点位置,(x',y')为场景图像角点位置,s为尺度参数。

RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。

RANSAC算法步骤:

1.随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出单应矩阵H,记为模型M;

2.计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;

3.如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;

4.如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;

注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;
其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;


使用RANSAC图片匹配

from numpy import *
from matplotlib.pyplot import *
from PIL import Image
import warp
import homography
from PCV.localdescriptors import sift

featname = ['img/' + str(i + 1) + '.sift' for i in range(5)]
imname = ['img/' + str(i + 1) + '.jpg' for i in range(5)]
l = {}
d = {}
for i in range(5):
    sift.process_image(imname[i], featname[i])
    l[i], d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
    matches[i] = sift.match(d[i + 1], d[i])

# visualize the matches (Figure 3-11 in the book)
for i in range(4):
    im1 = array(Image.open(imname[i]))
    im2 = array(Image.open(imname[i + 1]))
    figure()
    sift.plot_matches(im2, im1, l[i + 1], l[i], matches[i], show_below=True)

# 将匹配转换成齐次坐标点的函数
def convert_points(j):
    ndx = matches[j].nonzero()[0]
    fp = homography.make_homog(l[j + 1][ndx, :2].T)
    ndx2 = [int(matches[j][i]) for i in ndx]
    tp = homography.make_homog(l[j][ndx2, :2].T)

    # switch x and y - TODO this should move elsewhere
    fp = vstack([fp[1], fp[0], fp[2]])
    tp = vstack([tp[1], tp[0], tp[2]])
    return fp, tp

# 估计单应性矩阵
model = homography.RanSacModel()

fp, tp = convert_points(1)
H_12 = homography.H_from_ransac(fp, tp, model)[0]  # im 1 to 2
fp, tp = convert_points(0)
H_01 = homography.H_from_ransac(fp, tp, model)[0]  # im 0 to 1
tp, fp = convert_points(2)  # NB: reverse order
H_32 = homography.H_from_ransac(fp, tp, model)[0]  # im 3 to 2
tp, fp = convert_points(3)  # NB: reverse order
H_43 = homography.H_from_ransac(fp, tp, model)[0]  # im 4 to 3

# 扭曲图像
delta = 100  # 用于填充和平移 for padding and translation

im1 = array(Image.open(imname[1]), "uint8")
im2 = array(Image.open(imname[2]), "uint8")
im_12 = warp.panorama(H_12, im1, im2, delta, delta)
im1 = array(Image.open(imname[0]), "f")
im_02 = warp.panorama(dot(H_12, H_01), im1, im_12, delta, delta)
im1 = array(Image.open(imname[3]), "f")
im_32 = warp.panorama(H_32, im1, im_02, delta, delta)
im1 = array(Image.open(imname[4]), "f")
im_42 = warp.panorama(dot(H_32, H_43), im1, im_32, delta, 2 * delta)

figure()
imshow(array(im_42, "uint8"))
axis('off')
show()

进行匹配的图片


匹配后的图片



分析:

本次的拼接效果比较好,原因是因为我在同一时刻差不多角度拍摄的照片,噪声比较小,之前一组图片拍摄的噪声太大,导致最后出现不了结果。
由图片这部分可得,在不同时刻下拍摄照片导致天空颜色不同,在拼接的时候也会有明显的分割线。

在实验过程中,刚开始使用了一组照片,但运行不出结果,后来经过查询找到原因是因为图片匹配度太低,没办法进行匹配,后来重新拍摄了一组图片最终才完成。

到此这篇关于Python图像处理之图像拼接的文章就介绍到这了,更多相关Python图像拼接内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python调用stitcher类自动实现多个图像拼接融合功能

    使用stitcher需要注意,图像太大会报错而且计算慢. 特点和适用范围:图像需有足够重合相同特征区域. 优点:适应部分倾斜/尺度变换和畸变情形,拼接效果好,使用简单,可以一次拼接多张图片. 缺点:需要有足够的相同特征区域进行匹配,速度较慢(和图像大小有关). 原图(可下载) 代码(两张图片拼接) import sys import cv2 if __name__ == "__main__": img1 = cv2.imread('C:/Users/Guaguan/Desktop/im

  • python实现图像拼接功能

    利用Python将Market1501的分割图片和原图两张图片进行拼接成一左一右一张图片,并将图片的像素值调整成256*128. 所有文件夹: 文件夹下的所有原图: 文件夹下的所有的分割图片: 代码如下: import PIL.Image as Image import os IMAGES_PATH = 'E:/gyx/Learning/Practice/4/data/market1501_seg_1/test/ori_img/' # 原图片集地址 IMAGES_PATH_1 = 'E:/gyx

  • python opencv 图像拼接的实现方法

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移与合成,与图像内容无关.高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图. 具有相同尺寸的图A和图B含有相同的部分与不同的部分,如图所示:             用基于特征的图像拼接实现后: 设图像高为h,相同部分的宽度为wx 拼接后图像的宽w=wA+wB-wx 因此,可以先构建一个高为h,宽为W*2的空白图像,将左图像向右平移wx,右图像粘贴在右侧.则右图像刚好覆盖左图像中的相同部分

  • python opencv进行图像拼接

    本文实例为大家分享了python opencv进行图像拼接的具体代码,供大家参考,具体内容如下 思路和方法 思路 1.提取要拼接的两张图片的特征点.特征描述符: 2.将两张图片中对应的位置点找到,匹配起来: 3.如果找到了足够多的匹配点,就能将两幅图拼接起来,拼接前,可能需要将第二幅图透视旋转一下,利用找到的关键点,将第二幅图透视旋转到一个与第一幅图相同的可以拼接的角度: 4.进行拼接: 5.进行拼接后的一些处理,让效果看上去更好. 实现方法 1.提取图片的特征点.描述符,可以使用opencv创

  • python实现图像拼接

    本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 1.待拼接的图像 2. 基于SIFT特征点和RANSAC方法得到的图像特征点匹配结果 3.图像变换结果 4.代码及注意事项 import cv2 import numpy as np def cv_show(name, image): cv2.imshow(name, image) cv2.waitKey(0) cv2.destroyAllWindows() def detectAndCompute(image):

  • python实现单张图像拼接与批量图片拼接

    本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 一.效果  二.代码 1.单张图片拼接 # 图片拼接 from PIL import Image # pil paste可以进行图片拼接 import cv2 import numpy as np path="F:/out/"+str(0)+".jpg" img_out=cv2.imread(path) num=5 for i in range(1,num): path="F

  • python+OpenCV实现图像拼接

    本文实例为大家分享了利用python和OpenCV实现图像拼接,供大家参考,具体内容如下 python+OpenCV实现image stitching 在最新的OpenCV官方文档中可以找到C++版本的Stitcher类的说明, 但是python版本的还没有及时更新, 本篇对python版本的实现做一个简单的介绍. 由于官方文档中还没有python版本的Stitcher类的说明, 因此只能自己去GitHub源码上找, 以下是stitching的样例: from __future__ import

  • python实现固定尺寸图像拼接

    本文实例为大家分享了python实现固定尺寸图像拼接,供大家参考,具体内容如下 讲解 1.代码效果:固定尺寸图像拼接 代码 import os import cv2 import numpy as np def joint(or_path, tar_path, size): determination = tar_path if not os.path.exists(determination): os.makedirs(determination) path = or_path folders

  • python+gdal+遥感图像拼接(mosaic)的实例

    作为摄影测量与遥感的从业者,笔者最近开始深入研究gdal,为工作打基础!个人觉得gdal也是没有什么技术含量,调用别人的api.但是想想这也是算法应用的一个技能,多学无害! 关于遥感图像的镶嵌,主要分为6大步骤: step1: 1)对于每一幅图像,计算其行与列: 2)获取左上角X,Y 3)获取像素宽和像素高 4)计算max X 和 min Y,切记像素高是负值 maxX1 = minX1 + (cols1 * pixelWidth) minY1 = maxY1 + (rows1 * pixelH

  • Python图像处理之图像拼接

    一.前言 图像拼接技术就是将数张有重叠部分的图像(可能是不同时间.不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术. 二.特征点匹配 特征点具有局部差异性 动机:特征点具有局部差异性 图像梯度 Harris矩阵 以每个点为中心取一个窗口,窗口大小为55或者77,如果这个点具有差异性,往周围任意方向移动,周围的环境变化都是会比较大的,如果满足这个特性,我们就认为这个特征点具有明显的局部差异性.在工事中,I表示像素,如果是 彩色图像就是RGB,灰色图像就是灰度.(u,v)表示方

  • python图像处理之镜像实现方法

    本文实例讲述了python图像处理之镜像实现方法.分享给大家供大家参考.具体分析如下: 图像的镜像变化不改变图像的形状.图像的镜像变换分为三种:水平镜像.垂直镜像.对角镜像 设图像的大小为M×N,则 水平镜像可按公式 I = i J = N - j + 1 垂直镜像可按公式 I = M - i + 1 J = j 对角镜像可按公式 I = M - i + 1 J = N - j + 1 值得注意的是在OpenCV中坐标是从[0,0]开始的 所以,式中的 +1 在编程时需要改为 -1 这里运行环境

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • Python图像处理之简单画板实现方法示例

    本文实例讲述了Python图像处理之简单画板实现方法.分享给大家供大家参考,具体如下: Python图像处理也是依赖opencv的Python接口实现的,Python语言简单易懂,简洁明了.本次实现画板涂鸦,一个是在里面画矩形,还有画线.其他也都可以扩展,本案例只做例程,思路是对鼠标事件的处理,以及滚动条调节颜色处理.鼠标事件就包含有左键按下,以及释放事件的处理. import cv2 import numpy as np # null function def nothing(x): pass

  • Python 图像处理: 生成二维高斯分布蒙版的实例

    在图像处理以及图像特效中,经常会用到一种成高斯分布的蒙版,蒙版可以用来做图像融合,将不同内容的两张图像结合蒙版,可以营造不同的艺术效果. 这里II 表示合成后的图像,FF 表示前景图,BB 表示背景图,MM 表示蒙版,或者直接用 蒙版与图像相乘, 形成一种渐变映射的效果.如下所示. 这里介绍一下高斯分布蒙版的特性,并且用Python实现. 高斯分布的蒙版,简单来说,就是一个从中心扩散的亮度分布图,如下所示: 亮度的范围从 1 到 0, 从中心到边缘逐渐减弱,中心的亮度值最高为1,边缘的亮度值最低

  • Python图像处理之图片文字识别功能(OCR)

    OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR).可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制. Tesseract 是一个OCR 库,目前由Google 赞助(Google 也是一家以OCR 和机器学习技术闻名于世的公司).Tesseract 是目前公认最优秀.最精确的开源OCR 系统. 除 了极高的精确度,Tesseract 也具有很高的灵活性.它可

  • 详解Python图像处理库Pillow常用使用方法

    PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. 其官方主页为:PIL. PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3. PIL(Python Imaging Library)是Python一个强大方便的图像处理库

  • Python图像处理模块ndimage用法实例分析

    本文实例讲述了Python图像处理模块ndimage用法.分享给大家供大家参考,具体如下: 一 原始图像 1 代码 from scipy import misc from scipy import ndimage import matplotlib.pyplot as plt face = misc.face()#face是测试图像之一 plt.figure()#创建图形 plt.imshow(face)#绘制测试图像 plt.show()#原始图像 2 运行结果 二 高斯滤波 1 代码 fro

  • python 图像处理画一个正弦函数代码实例

    这篇文章主要介绍了python 图像处理画一个正弦函数代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import numpy as np from PIL import Image import matplotlib.pyplot as plt import math size = 300 new_im = Image.new("RGBA",(size,size)) #创建一个空的图片 a_img = np.array(ne

随机推荐