Python装饰器与线程结合提高接口访问效率方法

回顾装饰器的基本用法

装饰器的本质是闭包,是python的一种语法糖

def outer(fun):
    def inner(*args,**kwargs):
        return fun(*args,**kwargs)
    return inner
# 使用装饰器装饰一下两个函数
@outer
def num1():
    print('a')
@outer
def num2():
    print('b')
if __name__ == '__main__':
    print(num1.__name__)
    print(num2.__name__)
以上代码输出结果:
inner
inner
装饰器的特性:使用自定义的装饰器会改变被装饰函数的函数名,一般装饰器器是不用考虑这一点的,但是如果多个函数被两个装饰器装饰就会报错,因为函数名一样

解决办法:引入 functools.wraps

import functools
def outer(fun):
    @functools.wraps(fun)
    def inner(*args,**kwargs):
        return fun(*args,**kwargs)
    return inner

以上代码输出结果:
num1
num2

实际业务中的应用

定义多线程的装饰器

def async_call(fun):
    def wrapper(*args, **kwargs):
        Thread(target=fun, args=args, kwargs=kwargs).start()
    return wrapper

可以在需要提升效率的接口上添加该装饰器
因为正常来说线程的执行效率要比进程快

可以用装饰器测试并统计函数运行时间

import time
def coast_time(func):
    def fun(*args, **kwargs):
        t = time.perf_counter()
        result = func(*args, **kwargs)
        print(f'func {func.__name__} coast time:{time.perf_counter() - t:.8f} s')
        return result
    return fun

这个装饰器有感兴趣的朋友可以保存起来,以后测接口性能可以直接拿过来用!

from time import sleep
from time import time
import time
from threading import Thread
#这是统计时间的装饰器
def coast_time(func):
    def fun(*args, **kwargs):
        t = time.perf_counter()
        result = func(*args, **kwargs)
        print(f'func {func.__name__} coast time:{time.perf_counter() - t:.8f} s')
        return result
    return fun
#这是创建线程的装饰器,感兴趣的可以保存一下,可以直接使用的
def async_call(fun):
    def wrapper(*args, **kwargs):
        Thread(target=fun, args=args, kwargs=kwargs).start()
    return wrapper
@coast_time
@async_call
def hello():
    print('start')
    sleep(2)
    print('end')
    return
if __name__ == "__main__":
    hello()

不创建线程的运行时间是:2s多
使用线程装饰器的时间:0.0003s

可以在引入functools.wraps,防止装饰多个函数的时候,函数名被改变

以上就是Python装饰器与线程结合提高接口访问效率方法的详细内容,更多关于Python提高接口访问效率的资料请关注我们其它相关文章!

(0)

相关推荐

  • python使用装饰器和线程限制函数执行时间的方法

    本文实例讲述了python使用装饰器和线程限制函数执行时间的方法.分享给大家供大家参考.具体分析如下: 很多时候函数内部包含了一些不可预知的事情,比如调用其它软件,从网络抓取信息,可能某个函数会卡在某个地方不动态,这段代码可以用来限制函数的执行时间,只需要在函数的上方添加一个装饰器,timelimited(2)就可以限定函数必须在2秒内执行完成,如果执行完成则返回函数正常的返回值,如果执行超时则会抛出错误信息. # -*- coding: utf-8 -*- from threading imp

  • 深入了解Python装饰器的高级用法

    原文地址 https://www.codementor.io/python/tutorial/advanced-use-python-decorators-class-function 介绍 我写这篇文章的主要目的是介绍装饰器的高级用法.如果你对装饰器知之甚少,或者对本文讲到的知识点易混淆.我建议你复习下装饰器基础教程. 本教程的目标是介绍装饰器的一些有趣的用法.特别是怎样在类中使用装饰器,怎样给装饰器传递额外的参数. 装饰器 vs 装饰器模式 Decorator模式是一个面向对象的设计模式,它

  • Python中装饰器高级用法详解

    在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的.在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已. 场景 假设,有一些工作函数,用来对数据做不同的处理: def work_bar(data): pass def work_foo(data): pass 我们想在函数调用前/后输出日志,怎么办? 傻瓜解法 logging.info('begin call work_bar') work_bar(1) logging.info('cal

  • Python中使用装饰器来优化尾递归的示例

    尾递归简介 尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归. 递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的压栈,来创建递归, 很容易导致栈的溢出.而尾递归则使用当前栈通过数据覆盖来优化递归函数. 阶乘函数factorial, 通过把计算值传递的方法完成了尾递归.但是python不支出编译器优化尾递归所以当递归多次的话还是会报错(学习用). eg: def factorial(n, x): if n == 0: ret

  • Python装饰器与线程结合提高接口访问效率方法

    回顾装饰器的基本用法 装饰器的本质是闭包,是python的一种语法糖 def outer(fun): def inner(*args,**kwargs): return fun(*args,**kwargs) return inner # 使用装饰器装饰一下两个函数 @outer def num1(): print('a') @outer def num2(): print('b') if __name__ == '__main__': print(num1.__name__) print(nu

  • Python装饰器有哪些绝妙的用法

    目录 自定义 第三方工具包 内置 装饰器的价值不言而喻,可以用来增强函数功能.简化代码.减少代码冗余. 它的使用场景同样很多,比较简单的场景包含打印日志.统计运行时间,这类例子和用法网上已经很多了: def time_dec(func): ​ def wrapper(*arg): t = time.clock() res = func(*arg) print func.func_name, time.clock()-t return res ​ return wrapper ​ ​ @time_

  • Python 装饰器深入理解

    讲 Python 装饰器前,我想先举个例子,虽有点污,但跟装饰器这个话题很贴切. 每个人都有的内裤主要功能是用来遮羞,但是到了冬天它没法为我们防风御寒,咋办?我们想到的一个办法就是把内裤改造一下,让它变得更厚更长,这样一来,它不仅有遮羞功能,还能提供保暖,不过有个问题,这个内裤被我们改造成了长裤后,虽然还有遮羞功能,但本质上它不再是一条真正的内裤了.于是聪明的人们发明长裤,在不影响内裤的前提下,直接把长裤套在了内裤外面,这样内裤还是内裤,有了长裤后宝宝再也不冷了.装饰器就像我们这里说的长裤,在不

  • Python装饰器基础详解

    装饰器(decorator)是一种高级Python语法.装饰器可以对一个函数.方法或者类进行加工.在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果.相对于其它方式,装饰器语法简单,代码可读性高.因此,装饰器在Python项目中有广泛的应用. 前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法. 什么是装饰器 装饰是为函数和类指定管理代码的一种

  • Python 装饰器使用详解

    装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象. 经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权限校验等场景.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用. 先来看一个简单例子: def now(): print('2017_7_29') 现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码: def now():

  • python装饰器简介---这一篇也许就够了(推荐)

    Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼. 装饰器引入 初期及问题诞生 假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下: def f1(): print('f1 called') def f2(): print('f2 called') 在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才

  • Python装饰器限制函数运行时间超时则退出执行

    实际项目中会涉及到需要对有些函数的响应时间做一些限制,如果超时就退出函数的执行,停止等待. 可以利用python中的装饰器实现对函数执行时间的控制. python装饰器简单来说可以在不改变某个函数内部实现和原来调用方式的前提下对该函数增加一些附件的功能,提供了对该函数功能的扩展. 方法一. 使用 signal # coding=utf-8 import signal import time def set_timeout(num, callback): def wrap(func): def h

  • 使用python装饰器计算函数运行时间的实例

    装饰器在python里面有很重要的作用, 如果能够熟练使用,将会大大的提高工作效率 今天就来见识一下 python 装饰器,到底是怎么工作的. 本文主要是利用python装饰器计算函数运行时间 一些需要精确的计算函数运行了多久的程序,都可以采用这种方法 #coding:utf-8 import urllib2,re,time,random,os,datetime import HTMLParser import sys reload(sys) sys.setdefaultencoding('ut

  • Python装饰器基础概念与用法详解

    本文实例讲述了Python装饰器基础概念与用法.分享给大家供大家参考,具体如下: 装饰器基础 前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法. 什么是装饰器 装饰是为函数和类指定管理代码的一种方式.Python装饰器以两种形式呈现: [1]函数装饰器在函数定义的时候进行名称重绑定,提供一个逻辑层来管理函数和方法或随后对它们的调用. [2]类装饰器在类定义的时候进行名称重绑定,提供一个逻辑层来管理类,或管理随

随机推荐