Python关于excel和shp的使用在matplotlib

关于excel和shp的使用在matplotlib

  • 使用pandas 对excel进行简单操作
  • 使用cartopy 读取shpfile 展示到matplotlib中
  • 利用shpfile文件中的一些字段进行一些着色处理
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @File : map02.py
# @Author: huifer
# @Date : 2018/6/28
import folium
import pandas as pd
import requests
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import zipfile
import cartopy.io.shapereader as shaperead
from matplotlib import cm
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import os
dataurl = "http://image.data.cma.cn/static/doc/A/A.0012.0001/SURF_CHN_MUL_HOR_STATION.xlsx"
shpurl = "http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip"
def download_file(url):
  """
  根据url下载文件
  :param url: str
  """
  r = requests.get(url, allow_redirects=True)
  try:
    open(url.split('/')[-1], 'wb').write(r.content)
  except Exception as e:
    print(e)
def degree_conversion_decimal(x):
  """
  度分转换成十进制
  :param x: float
  :return: integer float
  """
  integer = int(x)
  integer = integer + (x - integer) * 1.66666667
  return integer
def unzip(zip_path, out_path):
  """
  解压zip
  :param zip_path:str
  :param out_path: str
  :return:
  """
  zip_ref = zipfile.ZipFile(zip_path, 'r')
  zip_ref.extractall(out_path)
  zip_ref.close()
def get_record(shp, key, value):
  countries = shp.records()
  result = [country for country in countries if country.attributes[key] == value]
  countries = shp.records()
  return result
def read_excel(path):
  data = pd.read_excel(path)
  # print(data.head(10)) # 获取几行
  # print(data.ix[data['省份']=='浙江',:].shape[0]) # 计数工具
  # print(data.sort_values('观测场拔海高度(米)',ascending=False).head(10))# 根据值排序
  # 判断经纬度是什么格式(度分 、 十进制) 判断依据 %0.2f 是否大于60
  # print(data['经度'].apply(lambda x:x-int(x)).sort_values(ascending=False).head()) # 结果判断为度分保存
  # 坐标处理
  data['经度'] = data['经度'].apply(degree_conversion_decimal)
  data['纬度'] = data['纬度'].apply(degree_conversion_decimal)
  ax = plt.axes(projection=ccrs.PlateCarree())
  ax.set_extent([70, 140, 15, 55])
  ax.stock_img()
  ax.scatter(data['经度'], data['纬度'], s=0.3, c='g')
  # shp = shaperead.Reader('ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp')
  # # 抽取函数 州:国家
  # city_list = [country for country in countries if country.attributes['ADMIN'] == 'China']
  # countries = shp.records()
  plt.savefig('test.png')
  plt.show()
def gdp(shp_path):
  """
  GDP 着色图
  :return:
  """
  shp = shaperead.Reader(shp_path)
  cas = get_record(shp, 'SUBREGION', 'Central Asia')
  gdp = [r.attributes['GDP_MD_EST'] for r in cas]
  gdp_min = min(gdp)
  gdp_max = max(gdp)
  ax = plt.axes(projection=ccrs.PlateCarree())
  ax.set_extent([45, 90, 35, 55])
  for r in cas:
    color = cm.Greens((r.attributes['GDP_MD_EST'] - gdp_min) / (gdp_max - gdp_min))
    ax.add_geometries(r.geometry, ccrs.PlateCarree(),
             facecolor=color, edgecolor='black', linewidth=0.5)
    ax.text(r.geometry.centroid.x, r.geometry.centroid.y, r.attributes['ADMIN'],
        horizontalalignment='center',
        verticalalignment='center',
        transform=ccrs.Geodetic())
  ax.set_xticks([45, 55, 65, 75, 85], crs=ccrs.PlateCarree()) # x坐标标注
  ax.set_yticks([35, 45, 55], crs=ccrs.PlateCarree()) # y 坐标标注
  lon_formatter = LongitudeFormatter(zero_direction_label=True)
  lat_formatter = LatitudeFormatter()
  ax.xaxis.set_major_formatter(lon_formatter)
  ax.yaxis.set_major_formatter(lat_formatter)
  plt.title('GDP TEST')
  plt.savefig("gdb.png")
  plt.show()
def run_excel():
  if os.path.exists("SURF_CHN_MUL_HOR_STATION.xlsx"):
    read_excel("SURF_CHN_MUL_HOR_STATION.xlsx")
  else:
    download_file(dataurl)
    read_excel("SURF_CHN_MUL_HOR_STATION.xlsx")
def run_shp():
  if os.path.exists("ne_10m_admin_0_countries"):
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
  else:
    download_file(shpurl)
    unzip('ne_10m_admin_0_countries.zip', "ne_10m_admin_0_countries")
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
if __name__ == '__main__':
  # download_file(dataurl)
  # download_file(shpurl)
  # cas = get_record('SUBREGION', 'Central Asia')
  # print([r.attributes['ADMIN'] for r in cas])
  # read_excel('SURF_CHN_MUL_HOR_STATION.xlsx')
  # gdp()
  run_excel()
  run_shp()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • Python中shapefile转换geojson的示例

    shapefile转换geojson import shapefile import codecs from json import dumps # read the shapefile def shp2geo(file="line出产.shp"): reader = shapefile.Reader(file) fields = reader.fields[1:] field_names = [field[0] for field in fields] buffer = [] for

  • Python获取航线信息并且制作成图的讲解

    获取航线信息并且制作成图 航线信息 航线信息查询网站 本次实例使用的航班号为 CES5496 查询后在network中可以寻找到如下内容https://zh.flightaware.com/ajax/ignoreall/trackpoll.rvt?token=c35ca45ecbca57cd1ea443d1c65c36426ea06630de026ffd737977e4a40a26ead614b3f2ddde9907453c214a859f7965-dd1320656957446e66d5342

  • Python使用folium excel绘制point

    使用folium excel 绘制point 制作内容 根据气象台资料获得的点进行绘制 对一个特殊的点做特别的标注 数据来源 #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : map03.py # @Author: huifer # @Date : 2018/6/28 import pandas as pd import math import folium def degree_conversion_decimal(x): "&qu

  • Python多图片合并PDF的方法

    python多图片合并pdf 起因 一个做美工的朋友需要将多个图片jpg .png 合并起来,PS操作太慢了所以用了python进行完成这个任务 代码 #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : 2.py # @Author: huifer # @Date : 2018/12/20 from PIL import Image import os def rea(pdf_name): file_list = os.listdir(

  • Python在图片中插入大量文字并且自动换行

    问题 如何在图片中插入大量文字并且自动换行 效果 原始图 效果图 注明 若需要写入中文请使用中文字体 实现方式 from PIL import Image, ImageDraw, ImageFont class ImgText: font = ImageFont.truetype("micross.ttf", 24) def __init__(self, text): # 预设宽度 可以修改成你需要的图片宽度 self.width = 100 # 文本 self.text = text

  • 对python调用RPC接口的实例详解

    要调用RPC接口,python提供了一个框架grpc,这是google开源的 rpc相关文档: https://grpc.io/docs/tutorials/basic/python.html 需要安装的python包如下: 1.grpc安装 pip install grpcio 2.grpc的python protobuf相关的编译工具 pip install grpcio-tools 3.protobuf相关python依赖库 pip install protobuf 4.一些常见原型的生成

  • Python中GeoJson和bokeh-1的使用讲解

    GeoJson 文档 { "type": "FeatureCollection", "features": [ { "geometry": { "type": "Polygon", "coordinates": [ [ [ 3, 1 ], [ 3, 2 ], [ 4, 2 ], [ 4, 1 ], [ 3, 1 ] ] ] }, "type": &

  • Python调用服务接口的实例

    如下所示: #! /usr/bin/env python # coding=utf-8 ###################################################################### # Author: yini.xie # Create Time: 2016-07-05 16:28:42 # Descriptioin: #################################################################

  • python使用suds调用webservice接口的方法

    最近做接口对接,遇到了.net开发的webservice接口,因为python第一次与webservice对接,连问带查,最后使用suds库来实现了 1.安装suds mac: sudo pip install suds linux: easy_install suds 也可以通过去官网下载suds代码,再本地安装 2. 引用初始化 >>> from suds.client import Client >>> url = 'http://www.gpsso.com/we

  • Python使用pyshp库读取shapefile信息的方法

    通过pyshp库,可以读写Shapefile文件,查询相关信息,github地址为 https://github.com/GeospatialPython/pyshp#reading-shapefile-meta-data import shapefile # 使用pyshp库 file = shapefile.Reader("data\\市界.shp") shapes = file.shapes() # <editor-fold desc="读取元数据"&g

随机推荐