python分治法求二维数组局部峰值方法

题目的意思大致是在一个n*m的二维数组中,找到一个局部峰值。峰值要求大于相邻的四个元素(数组边界以外视为负无穷),比如最后我们找到峰值A[j][i],则有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]。返回该峰值的坐标和值。

当然,最简单直接的方法就是遍历所有数组元素,判断是否为峰值,时间复杂度为O(n^2)

再优化一点求每一行(列)的最大值,再通过二分法找最大值列的峰值(具体方法可见一维数组求峰值),这种算法时间复杂度为O(logn)

这里讨论的是一种复杂度为O(n)的算法,算法思路分为以下几步:

1、找“田”字。包括外围的四条边和中间横竖两条边(图中绿色部分),比较其大小,找到最大值的位置。(图中的7)

2、找到田字中最大值后,判断它是不是局部峰值,如果是返回该坐标,如果不是,记录找到相邻四个点中最大值坐标。通过该坐标所在的象限缩小范围,继续比较下一个田字

3、当范围缩小到3*3时必定会找到局部峰值(也可能之前就找到了)

关于为什么我们选择的范围内一定存在峰值,大家可以这样想,首先我们有一个圈,我们已知有圈内至少有一个元素大于这个圈所有的元素,那么,是不是这个圈中一定有一个最大值?

可能说得有点绕,但是多想想应该能够理解,也可以用数学的反证法来证明。

算法我们理解后接下来就是代码实现了,这里我用的语言是python(初学python,可能有些用法上不够简洁请见谅),先上代码:

import numpy as np
def max_sit(*n):     #返回最大元素的位置
 temp = 0
 sit = 0
 for i in range(len(n)):
  if(n[i]>temp):
   temp = n[i]
   sit = i
 return sit
def dp(s1,s2,e1,e2):
 m1 = int((e1-s1)/2)+s1   #row
 m2 = int((e2-s1)/2)+s2   #col
 nub = e1-s1
 temp = 0
 sit_row = 0
 sit_col = 0
 for i in range(nub):
  t = max_sit(list[s1][s2+i],     #第一排
     list[m1][s2+i],     #中间排
     list[e1][s2+i],     #最后排
     list[s1+i][s2],     #第一列
     list[s1+i][m2],     #中间列
     list[s1+i][e2],     #最后列
     temp)
  if(t==6):
   pass
  elif(t==0):
   temp = list[s1][s2+i]
   sit_row = s1
   sit_col = s2+i
  elif(t==1):
   temp = list[m1][s2+i]
   sit_row = m1
   sit_col = s2+i
  elif(t==2):
   temp = list[e1][s2+i]
   sit_row = e1
   sit_col = s2+i
  elif(t==3):
   temp = list[s1+i][s2]
   sit_row = s1+i
   sit_row = s2
  elif(t==4):
   temp = list[s1+i][m2]
   sit_row = s1+i
   sit_col = m2
  elif(t==5):
   temp = list[s1+i][e2]
   sit_row = s1+i
   sit_col = m2
 t = max_sit(list[sit_row][sit_col],   #中
    list[sit_row-1][sit_col],  #上
    list[sit_row+1][sit_col],  #下
    list[sit_row][sit_col-1],  #左
    list[sit_row][sit_col+1])  #右
 if(t==0):
  return [sit_row-1,sit_col-1]
 elif(t==1):
  sit_row-=1
 elif(t==2):
  sit_row+=1
 elif(t==3):
  sit_col-=1
 elif(t==4):
  sit_col+=1
 if(sit_row<m1):
  e1 = m1
 else:
  s1 = m1
 if(sit_col<m2):
  e2 = m2
 else:
  s2 = m2
 return dp(s1,s2,e1,e2)
f = open("demo.txt","r")
list = f.read()
list = list.split("\n")       #对行进行切片
list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的围墙
for i in range(len(list)):      #对列进行切片
 list[i] = list[i].split()
 list[i] = ["0"]+list[i]+["0"]    #加左右的围墙
list = np.array(list).astype(np.int32)
row_n = len(list)
col_n = len(list[0])
ans_sit = dp(0,0,row_n-1,col_n-1)
print("找到峰值点位于:",ans_sit)
print("该峰值点大小为:",list[ans_sit[0]+1,ans_sit[1]+1])
f.close()

首先我的输入写在txt文本文件里,通过字符串转换变为二维数组,具体转换过程可以看我上一篇博客——python中字符串转换为二维数组。(需要注意的是如果在windows环境中split后的列表没有空尾巴,所以不用加list.pop()这句话)。有的变动是我在二维数组四周加了“0”的围墙。加围墙可以再我们判断峰值的时候不用考虑边界问题。

max_sit(*n)函数用于找到多个值中最大值的位置,返回其位置,python的内构的max函数只能返回最大值,所以还是需要自己写,*n表示不定长参数,因为我需要在比较田和十(判断峰值)都用到这个函数

def max_sit(*n):     #返回最大元素的位置
 temp = 0
 sit = 0
 for i in range(len(n)):
  if(n[i]>temp):
   temp = n[i]
   sit = i
 return sit

dp(s1,s2,e1,e2)函数中四个参数的分别可看为startx,starty,endx,endy。即我们查找范围左上角和右下角的坐标值。

m1,m2分别是row 和col的中间值,也就是田字的中间。

def dp(s1,s2,e1,e2):
 m1 = int((e1-s1)/2)+s1   #row
 m2 = int((e2-s1)/2)+s2   #col 

依次比较3行3列中的值找到最大值,注意这里要求二维数组为正方形,如果为矩形需要做调整

 for i in range(nub):
  t = max_sit(list[s1][s2+i],     #第一排
     list[m1][s2+i],     #中间排
     list[e1][s2+i],     #最后排
     list[s1+i][s2],     #第一列
     list[s1+i][m2],     #中间列
     list[s1+i][e2],     #最后列
     temp)
  if(t==6):
   pass
  elif(t==0):
   temp = list[s1][s2+i]
   sit_row = s1
   sit_col = s2+i
  elif(t==1):
   temp = list[m1][s2+i]
   sit_row = m1
   sit_col = s2+i
  elif(t==2):
   temp = list[e1][s2+i]
   sit_row = e1
   sit_col = s2+i
  elif(t==3):
   temp = list[s1+i][s2]
   sit_row = s1+i
   sit_row = s2
  elif(t==4):
   temp = list[s1+i][m2]
   sit_row = s1+i
   sit_row = m2
  elif(t==5):
   temp = list[s1+i][e2]
   sit_row = s1+i
   sit_row = m2

判断田字中最大值是不是峰值,并找不出相邻最大值

t = max_sit(list[sit_row][sit_col],   #中
    list[sit_row-1][sit_col],  #上
    list[sit_row+1][sit_col],  #下
    list[sit_row][sit_col-1],  #左
    list[sit_row][sit_col+1])  #右
 if(t==0):
  return [sit_row-1,sit_col-1]
 elif(t==1):
  sit_row-=1
 elif(t==2):
  sit_row+=1
 elif(t==3):
  sit_col-=1
 elif(t==4):
  sit_col+=1 

缩小范围,递归求解

 if(sit_row<m1):
  e1 = m1
 else:
  s1 = m1
 if(sit_col<m2):
  e2 = m2
 else:
  s2 = m2 

 return dp(s1,s2,e1,e2) 

好了,到这里代码基本分析完了。如果还有不清楚的地方欢迎下方留言。

除了这种算法外,我也写一种贪心算法来求解这道题,只可惜最坏的情况下算法复杂度还是O(n^2),QAQ。

大体的思路就是从中间位置起找相邻4个点中最大的点,继续把该点来找相邻最大点,最后一定会找到一个峰值点,有兴趣的可以看一下,上代码:

#!/usr/bin/python3
def dp(n):
 temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9])  #中 上 左 右 下
 sit = temp.index(max(temp))
 if(sit==0):
  return str[n]
 elif(sit==1):
  return dp(n-9)
 elif(sit==2):
  return dp(n-1)
 elif(sit==3):
  return dp(n+1)
 else:
  return dp(n+9)
f = open("/home/nancy/桌面/demo.txt","r")
list = f.read()
list = list.replace(" ","").split()  #转换为列表
row = len(list)
col = len(list[0])
str="0"*(col+3)
for x in list:      #加围墙 二维变一维
 str+=x+"00"
str+="0"*(col+1)
mid = int(len(str)/2)
print(str,mid)
p = dp(mid)
print (p)
f.close()

以上这篇python分治法求二维数组局部峰值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 对python产生随机的二维数组实例详解

    最近找遍了python的各个函数发现无法直接生成随机的二维数组,其中包括random()相关的各种方法,都没有得到想要的结果.最后在一篇博客中受到启发,通过列表解析的方法得到随机的二维数组. 具体如下: a = [[random.randint(1, 4) for j in range(1, 3)] for i in range(1, 11)] print(array(a)) 其中random.randint(1, 4)用来产生一个随机整数.此时创建了一个10行2列的数组. [[1 3] [1

  • Python输入二维数组方法

    前不久对于Python输入二维数组有些不解,今日成功尝试,记以备忘.这里以输入1-9,3*3矩阵为例 n=int(input()) line=[[0]*n]*n for i in range(n): line[i]=input().split(' ') print(line) 使用数据转换为int即可! 以上这篇Python输入二维数组方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 一些Python中的二维数组的操作方法 python中字

  • Python中的二维数组实例(list与numpy.array)

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a

  • Python实现二维数组按照某行或列排序的方法【numpy lexsort】

    本文实例讲述了Python实现二维数组按照某行或列排序的方法.分享给大家供大家参考,具体如下: lexsort支持对数组按指定行或列的顺序排序:是间接排序,lexsort不修改原数组,返回索引. (对应lexsort 一维数组的是argsort a.argsort()这么使用就可以:argsort也不修改原数组, 返回索引) 默认按最后一行元素有小到大排序, 返回最后一行元素排序后索引所在位置. 设数组a, 返回的索引ind,ind返回的是一维数组 对于一维数组, a[ind]就是排序后的数组.

  • Python中创建二维数组

    二维数组 二维数组本质上是以数组作为数组元素的数组,即"数组的数组",类型说明符 数组名[常量表达式][常量表达式].二维数组又称为矩阵,行列数相等的矩阵称为方阵.对称矩阵a[i][j] = a[j][i],对角矩阵:n阶方阵主对角线外都是零元素. Python中创建二维数组 Python中的列表list可以当做一维数组使用,但是没有直接的定义使用二维数组.如果直接使用a = [][]会产生SyntaxError: invalid syntax语法不正确错误. 一般Python中创建二

  • Python简单获取二维数组行列数的方法示例

    本文实例讲述了Python简单获取二维数组行列数的方法.分享给大家供大家参考,具体如下: import numpy as np x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]]) # 输出数组的行和列数 print x.shape # (4, 3) # 只输出行数 print x.shape[0] # 4 # 只输出列数 print x.shape[1] # 3 本机测试运行结果如下图所示: 或者: >>> arr = [[1,4,7,10,1

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • Python numpy实现二维数组和一维数组拼接的方法

    撰写时间:2017.5.23 一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很

  • python中字符串变二维数组的实例讲解

    有一道算法题题目的意思是在二维数组里找到一个峰值.要求复杂度为n. 解题思路是找田字(四边和中间横竖两行)中最大值,用分治法递归下一个象限的田字. 在用python定义一个二维数组时可以有list和numpy.array两种方式,看了几篇python中二维数组的建立的博客发现大多都是建立的初始化的二维数组,而我需要通过文件读取得到的是字符串,再把字符串转换为二维数组,找不到解决方法还是决定自己来转换. 首先,最开始的字符串输出如下,数字之间有空格 思路就是把先按换行符进行切片,再对每一行的字符再

  • python分治法求二维数组局部峰值方法

    题目的意思大致是在一个n*m的二维数组中,找到一个局部峰值.峰值要求大于相邻的四个元素(数组边界以外视为负无穷),比如最后我们找到峰值A[j][i],则有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1].返回该峰值的坐标和值. 当然,最简单直接的方法就是遍历所有数组元素,判断是否为峰值,时间复杂度为O(n^2

  • python+numpy按行求一个二维数组的最大值方法

    问题描述: 给定一个二维数组,求每一行的最大值 返回一个列向量 如: 给定数组[1,2,3:4,5,3] 返回[3:5] import numpy as np x = np.array([[1,2,3],[4,5,3]]) # 先求每行最大值得下标 index_max = np.argmax(x, axis=1)# 其中,axis=1表示按行计算 print(index_max.shape) max = x[range(x.shape[0]), index_max] print(max) # 注

  • C语言算法练习之求二维数组最值问题

    目录 一.问题描述 二.算法实例编译环境 三.算法实例实现过程 3.1.包含头文件 3.2.定义宏和声明数组 3.3.声明相关变量 3.4.输入数组(方阵)的阶 3.5.输出 “输入的数组” 3.6.计算每行最大数据中的 最小的那一个数字 3.7.计算每行最小数据中的 最大的那一个数字 四.经典算法实例程序 4.1.main.h文件 4.2.main.c文件 五.总结 一.问题描述 求二维数组最大最小值 问题的描述 如下几点所示 1.在n 行 n 列的二维整数数组中,按以下要求选出两个数. 2.

  • python中的Numpy二维数组遍历与二维数组切片后遍历效率比较

    在python-numpy使用中,可以用双层 for循环对数组元素进行访问,也可以切片成每一行后进行一维数组的遍历. 代码如下: import numpy as np import time NUM = 160 a=np.random.random((NUM,NUM)) start = time.time() for i in range(NUM):     for j in range(NUM):         if a[i][j] == 1.0:             pass end1

  • java实现二维数组转置的方法示例

    本文实例讲述了java实现二维数组转置的方法.分享给大家供大家参考,具体如下: 这里在文件中创建Test2.Exchange.Out三个类 在Exchange类中编写exchange()方法,在方法中创建两个数组arraryA.arraryB,arraryB[j][i]=arraryA[i][j]实现数组的转置. 在Out类中编写out()方法,在方法中用for循环遍历实现输出. 具体代码如下: package Tsets; import java.util.*; public class Te

  • php一维二维数组键排序方法实例总结

    本文实例总结了php一维二维数组键排序方法.分享给大家供大家参考.具体方法如下: 在php中数组排序一直是一个老生常谈的问题,下面我们来集中讲一下关于在php中一维数组与二维数组排序的实现程序,相信对大家有一定的参考借鉴价值. 功能:对数组进行重新排序. 说明:冒泡排序 (一维数组)(二维数组某个健排序) 两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止 设想被排序的数组R[1..N] 垂直竖立,将每个数据元素看作有重量的气泡,从下往上扫描数组,凡

  • C读txt到二维数组的实现方法

    实例如下: #include<stdio.h> #include<stdlib.h> #define maxn 200 void main() { FILE *fp; int s[maxn][maxn]; int i,j; if((fp=fopen("d:\\temp\\test.txt","r"))==NULL) { printf(" can't open"); exit(0); } for(i=0;i<maxn;

  • C与C++动态分配二维数组的实现方法

    C: C中使用函数malloc和free两个函数. //动态分配M*N维 int **a=(int **)malloc(sizeof(int*)*M); for(int i=0;i<M;i++) a[i]=(int *)malloc(sizeof(int)*N); //动态释放 for(int j=0;j<M;j++) free(a[i]); free[a]; C++: C++ 使用关键字new和delete. //动态分配M*N维 int **a=new int *[M]; for(int

  • AngularJS使用ng-repeat遍历二维数组元素的方法详解

    本文实例讲述了AngularJS使用ng-repeat遍历二维数组元素的方法.分享给大家供大家参考,具体如下: 问题: 最近在做报表的项目,有一种情况是后台返回给我的是一个二维数组,在前台将数据放入到表格中,因为我们用的是angularJS的前台框架,所以利用ng-repeat来实现. 实现方法: 首先在js中: $scope.Week = [[ '云南省 ', 'a', 's', 'd', 'e', 'w','t' ],[ '陕西省 ', 'l', 'p', 'o', 'i', 'u','y'

随机推荐