Java数据结构之线段树详解
目录
- 介绍
- 代码实现
- 线段树构建
- 区间查询
- 更新
- 总结
介绍
线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下
以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推。
代码实现
/** * 使用数组实现线段树 */ public class SegmentTree<E> { private Node[] data; private int size; private Merger<E> merger; public SegmentTree(E[] source, Merger<E> merger) { this.merger = merger; this.size = source.length; this.data = new Node[size * 4]; buildTree(0, source, 0, size - 1); } public E search(int queryLeft, int queryRight) { if (queryLeft < 0 || queryLeft > size || queryRight < 0 || queryRight > size || queryLeft > queryRight) { throw new IllegalArgumentException("index is illegal"); } return search(0, queryLeft, queryRight); } /** * 查询区间queryLeft-queryRight的值 */ private E search(int treeIndex, int queryLeft, int queryRight) { Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == queryLeft && right == queryRight) { return elementData(treeIndex); } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (queryLeft > middle) { return search(rightTreeIndex, queryLeft, queryRight); } else if (queryRight <= middle) { return search(leftTreeIndex, queryLeft, queryRight); } E leftEle = search(leftTreeIndex, queryLeft, middle); E rightEle = search(rightTreeIndex, middle + 1, queryRight); return merger.merge(leftEle, rightEle); } public void update(int index, E e) { update(0, index, e); } /** * 更新索引为index的值为e */ private void update(int treeIndex, int index, E e) { Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == right) { treeNode.data = e; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (index > middle) { update(rightTreeIndex, index, e); } else { update(leftTreeIndex, index, e); } treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); } private void buildTree(int treeIndex, E[] source, int left, int right) { if (left == right) { data[treeIndex] = new Node<>(source[left], left, right); return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); buildTree(leftTreeIndex, source, left, middle); buildTree(rightTreeIndex, source, middle + 1, right); E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); data[treeIndex] = new Node<>(treeData, left, right); } @Override public String toString() { return Arrays.toString(data); } private E elementData(int index) { return (E) data[index].data; } private int leftChild(int index) { return index * 2 + 1; } private int rightChild(int index) { return index * 2 + 2; } private static class Node<E> { E data; int left; int right; Node(E data, int left, int right) { this.data = data; this.left = left; this.right = right; } @Override public String toString() { return String.valueOf(data); } } public interface Merger<E> { E merge(E e1, E e2); } }
我们以LeetCode上的一个问题来分析线段树的构建,查询和更新,LeetCode307问题如下:
给定一个整数数组,查询索引区间[i,j]的元素的总和。
线段树构建
private void buildTree(int treeIndex, E[] source, int left, int right) { if (left == right) { data[treeIndex] = new Node<>(source[left], left, right); return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); buildTree(leftTreeIndex, source, left, middle); buildTree(rightTreeIndex, source, middle + 1, right); E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); data[treeIndex] = new Node<>(treeData, left, right); }
测试代码
public class Main { public static void main(String[] args) { Integer[] nums = {-2, 0, 3, -5, 2, -1}; SegmentTree<Integer> segmentTree = new SegmentTree<>(nums, Integer::sum); System.out.println(segmentTree); } }
最后构造出的线段树如下,前面为元素值,括号中为包含的区间。
递归构造过程为
- 当左指针和右指针相等时,表示为叶子节点
- 将左孩子和右孩子值相加,构造当前节点,依次类推
区间查询
/** * 查询区间queryLeft-queryRight的值 */ private E search(int treeIndex, int queryLeft, int queryRight) { Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == queryLeft && right == queryRight) { return elementData(treeIndex); } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (queryLeft > middle) { return search(rightTreeIndex, queryLeft, queryRight); } else if (queryRight <= middle) { return search(leftTreeIndex, queryLeft, queryRight); } E leftEle = search(leftTreeIndex, queryLeft, middle); E rightEle = search(rightTreeIndex, middle + 1, queryRight); return merger.merge(leftEle, rightEle); }
查询区间2-5的和
public class Main { public static void main(String[] args) { Integer[] nums = {-2, 0, 3, -5, 2, -1}; SegmentTree<Integer> segmentTree = new SegmentTree<>(nums, Integer::sum); System.out.println(segmentTree); System.out.println(segmentTree.search(2, 5)); // -1 } }
查询过程为
- 待查询的区间和当前节点的区间相等,返回当前节点值
- 待查询左区间大于中间区间值,查询右孩子
- 待查询右区间小于中间区间值,查询左孩子
- 待查询左区间在左孩子,右区间在右孩子,两边查询结果相加
更新
/** * 更新索引为index的值为e */ private void update(int treeIndex, int index, E e) { Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == right) { treeNode.data = e; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (index > middle) { update(rightTreeIndex, index, e); } else { update(leftTreeIndex, index, e); } treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); }
更新只影响元素值,不影响元素区间。
更新其实和构建的逻辑类似,找到待更新的实际索引,依次更新父节点的值。
总结
线段树可以很好地处理区间问题,如区间求和,求最大最小值等。
以上就是Java 数据结构之线段树详解的详细内容,更多关于Java 线段树的资料请关注我们其它相关文章!
赞 (0)