python下调用pytesseract识别某网站验证码的实现方法

一、pytesseract介绍

1、pytesseract说明

pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract

Python-tesseract is a wrapper for google's Tesseract-OCR
( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a
stand-alone invocation script to tesseract, as it can read all image types
supported by the Python Imaging Library, including jpeg, png, gif, bmp, tiff,
and others, whereas tesseract-ocr by default only supports tiff and bmp.
Additionally, if used as a script, Python-tesseract will print the recognized
text in stead of writing it to a file. Support for confidence estimates and
bounding box data is planned for future releases.

翻译一下大意:

a、Python-tesseract是一个基于google's Tesseract-OCR的独立封装包;

b、Python-tesseract功能是识别图片文件中文字,并作为返回参数返回识别结果;

c、Python-tesseract默认支持tiff、bmp格式图片,只有在安装PIL之后,才能支持jpeg、gif、png等其他图片格式;

2、pytesseract安装

INSTALLATION:

Prerequisites:
* Python-tesseract requires python 2.5 or later or python 3.
* You will need the Python Imaging Library (PIL). Under Debian/Ubuntu, this is
the package "python-imaging" or "python3-imaging" for python3.
* Install google tesseract-ocr from http://code.google.com/p/tesseract-ocr/ .
You must be able to invoke the tesseract command as "tesseract". If this
isn't the case, for example because tesseract isn't in your PATH, you will
have to change the "tesseract_cmd" variable at the top of 'tesseract.py'.
Under Debian/Ubuntu you can use the package "tesseract-ocr".

Installing via pip:

See the [pytesseract package page](https://pypi.python.org/pypi/pytesseract)
```
$> sudo pip install pytesseract

翻译一下:

a、Python-tesseract支持python2.5及更高版本;

b、Python-tesseract需要安装PIL(Python Imaging Library) ,来支持更多的图片格式;

c、Python-tesseract需要安装tesseract-ocr安装包。

综上,Pytesseract原理:

1、上一篇博文中提到,执行命令行 tesseract.exe 1.png output -l eng ,可以识别1.png中文字,并把识别结果输出到output.txt中;

2、Pytesseract对上述过程进行了二次封装,自动调用tesseract.exe,并读取output.txt文件的内容,作为函数的返回值进行返回。

二、pytesseract使用

USAGE:
```
> try:
> import Image
> except ImportError:
> from PIL import Image
> import pytesseract
> print(pytesseract.image_to_string(Image.open('test.png')))
> print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='fra'))

可以看到:

1、核心代码就是image_to_string函数,该函数还支持-l eng 参数,支持-psm 参数。

用法:

image_to_string(Image.open('test.png'),lang="eng" config="-psm 7")

2、pytesseract里调用了image,所以才需要PIL,其实tesseract.exe本身是支持jpeg、png等图片格式的。

实例代码,识别某公共网站的验证码(大家千万别干坏事啊,思虑再三,最后还是隐掉网站域名,大家去找别的网站试试吧……):

#-*-coding=utf-8-*-
__author__='zhongtang'

import urllib
import urllib2
import cookielib
import math
import random
import time
import os
import htmltool
from pytesseract import *
from PIL import Image
from PIL import ImageEnhance
import re

class orclnypcg:
  def __init__(self):
    self.baseUrl='http://jbywcg.****.com.cn'
    self.ht=htmltool.htmltool()
    self.curPath=self.ht.getPyFileDir()
    self.authCode=''

  def initUrllib2(self):
    try:
      cookie = cookielib.CookieJar()
      cookieHandLer = urllib2.HTTPCookieProcessor(cookie)
      httpHandLer=urllib2.HTTPHandler(debuglevel=0)
      httpsHandLer=urllib2.HTTPSHandler(debuglevel=0)
    except:
      raise
    else:
       opener = urllib2.build_opener(cookieHandLer,httpHandLer,httpsHandLer)
       opener.addheaders = [('User-Agent','Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11')]
       urllib2.install_opener(opener)

  def urllib2Navigate(self,url,data={}):      #定义连接函数,有超时重连功能
    tryTimes = 0
    while True:
      if (tryTimes>20):
        print u"多次尝试仍无法链接网络,程序终止"
        break
      try:
        if (data=={}):
          req = urllib2.Request(url)
        else:
          req = urllib2.Request(url,urllib.urlencode(data))
        response =urllib2.urlopen(req)
        bodydata = response.read()
        headerdata = response.info()
        if headerdata.get('Content-Encoding')=='gzip':
          rdata = StringIO.StringIO(bodydata)
          gz = gzip.GzipFile(fileobj=rdata)
          bodydata = gz.read()
          gz.close()
        tryTimes = tryTimes +1
      except urllib2.HTTPError, e:
       print 'HTTPError[%s]\n' %e.code
      except urllib2.URLError, e:
       print 'URLError[%s]\n' %e.reason
      except socket.error:
        print u"连接失败,尝试重新连接"
      else:
        break
    return bodydata,headerdata

  def randomCodeOcr(self,filename):
    image = Image.open(filename)
    #使用ImageEnhance可以增强图片的识别率
    #enhancer = ImageEnhance.Contrast(image)
    #enhancer = enhancer.enhance(4)
    image = image.convert('L')
    ltext = ''
    ltext= image_to_string(image)
    #去掉非法字符,只保留字母数字
    ltext=re.sub("\W", "", ltext)
    print u'[%s]识别到验证码:[%s]!!!' %(filename,ltext)
    image.save(filename)
    #print ltext
    return ltext

  def getRandomCode(self):
    #开始获取验证码
    #http://jbywcg.****.com.cn/CommonPage/Code.aspx?0.9409255818463862
    i = 0
    while ( i<=100):
      i += 1
      #拼接验证码Url
      randomUrlNew='%s/CommonPage/Code.aspx?%s' %(self.baseUrl,random.random())
      #拼接验证码本地文件名
      filename= '%s.png' %(i)
      filename= os.path.join(self.curPath,filename)
      jpgdata,jpgheader = self.urllib2Navigate(randomUrlNew)
      if len(jpgdata)<= 0 :
        print u'获取验证码出错!\n'
        return False
      f = open(filename, 'wb')
      f.write(jpgdata)
      #print u"保存图片:",fileName
      f.close()
      self.authCode = self.randomCodeOcr(filename)

#主程序开始
orcln=orclnypcg()
orcln.initUrllib2()
orcln.getRandomCode()

三、pytesseract代码优化

上述程序在windows平台运行时,会发现有黑色的控制台窗口一闪而过的画面,不太友好。

略微修改了pytesseract.py(C:\Python27\Lib\site-packages\pytesseract目录下),把上述过程进行了隐藏。

# modified by zhongtang hide console window
# new code
IS_WIN32 = 'win32' in str(sys.platform).lower()
if IS_WIN32:
   startupinfo = subprocess.STARTUPINFO()
   startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
   startupinfo.wShowWindow = subprocess.SW_HIDE
   proc = subprocess.Popen(command,
        stderr=subprocess.PIPE,startupinfo=startupinfo)
'''
# old code
proc = subprocess.Popen(command,
   stderr=subprocess.PIPE)
'''
# modified end

为了方便初学者,把pytesseract.py也贴出来,高手自行忽略。

#!/usr/bin/env python
'''
Python-tesseract is an optical character recognition (OCR) tool for python.
That is, it will recognize and "read" the text embedded in images.

Python-tesseract is a wrapper for google's Tesseract-OCR
( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a
stand-alone invocation script to tesseract, as it can read all image types
supported by the Python Imaging Library, including jpeg, png, gif, bmp, tiff,
and others, whereas tesseract-ocr by default only supports tiff and bmp.
Additionally, if used as a script, Python-tesseract will print the recognized
text in stead of writing it to a file. Support for confidence estimates and
bounding box data is planned for future releases.

USAGE:
```
 > try:
 >   import Image
 > except ImportError:
 >   from PIL import Image
 > import pytesseract
 > print(pytesseract.image_to_string(Image.open('test.png')))
 > print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='fra'))
```

INSTALLATION:

Prerequisites:
* Python-tesseract requires python 2.5 or later or python 3.
* You will need the Python Imaging Library (PIL). Under Debian/Ubuntu, this is
 the package "python-imaging" or "python3-imaging" for python3.
* Install google tesseract-ocr from http://code.google.com/p/tesseract-ocr/ .
 You must be able to invoke the tesseract command as "tesseract". If this
 isn't the case, for example because tesseract isn't in your PATH, you will
 have to change the "tesseract_cmd" variable at the top of 'tesseract.py'.
 Under Debian/Ubuntu you can use the package "tesseract-ocr".

Installing via pip:
See the [pytesseract package page](https://pypi.python.org/pypi/pytesseract)
$> sudo pip install pytesseract  

Installing from source:
$> git clone git@github.com:madmaze/pytesseract.git
$> sudo python setup.py install  

LICENSE:
Python-tesseract is released under the GPL v3.

CONTRIBUTERS:
- Originally written by [Samuel Hoffstaetter](https://github.com/hoffstaetter)
- [Juarez Bochi](https://github.com/jbochi)
- [Matthias Lee](https://github.com/madmaze)
- [Lars Kistner](https://github.com/Sr4l)

'''

# CHANGE THIS IF TESSERACT IS NOT IN YOUR PATH, OR IS NAMED DIFFERENTLY
tesseract_cmd = 'tesseract'

try:
  import Image
except ImportError:
  from PIL import Image
import subprocess
import sys
import tempfile
import os
import shlex

__all__ = ['image_to_string']

def run_tesseract(input_filename, output_filename_base, lang=None, boxes=False, config=None):
  '''
  runs the command:
    `tesseract_cmd` `input_filename` `output_filename_base`

  returns the exit status of tesseract, as well as tesseract's stderr output

  '''
  command = [tesseract_cmd, input_filename, output_filename_base]

  if lang is not None:
    command += ['-l', lang]

  if boxes:
    command += ['batch.nochop', 'makebox']

  if config:
    command += shlex.split(config)

  # modified by zhongtang hide console window
  # new code
  IS_WIN32 = 'win32' in str(sys.platform).lower()
  if IS_WIN32:
    startupinfo = subprocess.STARTUPINFO()
    startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
    startupinfo.wShowWindow = subprocess.SW_HIDE
  proc = subprocess.Popen(command,
      stderr=subprocess.PIPE,startupinfo=startupinfo)
  '''
  # old code
  proc = subprocess.Popen(command,
      stderr=subprocess.PIPE)
  '''
  # modified end

  return (proc.wait(), proc.stderr.read())

def cleanup(filename):
  ''' tries to remove the given filename. Ignores non-existent files '''
  try:
    os.remove(filename)
  except OSError:
    pass

def get_errors(error_string):
  '''
  returns all lines in the error_string that start with the string "error"

  '''

  lines = error_string.splitlines()
  error_lines = tuple(line for line in lines if line.find('Error') >= 0)
  if len(error_lines) > 0:
    return '\n'.join(error_lines)
  else:
    return error_string.strip()

def tempnam():
  ''' returns a temporary file-name '''
  tmpfile = tempfile.NamedTemporaryFile(prefix="tess_")
  return tmpfile.name

class TesseractError(Exception):
  def __init__(self, status, message):
    self.status = status
    self.message = message
    self.args = (status, message)

def image_to_string(image, lang=None, boxes=False, config=None):
  '''
  Runs tesseract on the specified image. First, the image is written to disk,
  and then the tesseract command is run on the image. Resseract's result is
  read, and the temporary files are erased.

  also supports boxes and config.

  if boxes=True
    "batch.nochop makebox" gets added to the tesseract call
  if config is set, the config gets appended to the command.
    ex: config="-psm 6"

  '''

  if len(image.split()) == 4:
    # In case we have 4 channels, lets discard the Alpha.
    # Kind of a hack, should fix in the future some time.
    r, g, b, a = image.split()
    image = Image.merge("RGB", (r, g, b))

  input_file_name = '%s.bmp' % tempnam()
  output_file_name_base = tempnam()
  if not boxes:
    output_file_name = '%s.txt' % output_file_name_base
  else:
    output_file_name = '%s.box' % output_file_name_base
  try:
    image.save(input_file_name)
    status, error_string = run_tesseract(input_file_name,
                       output_file_name_base,
                       lang=lang,
                       boxes=boxes,
                       config=config)
    if status:
      #print 'test' , status,error_string
      errors = get_errors(error_string)
      raise TesseractError(status, errors)
    f = open(output_file_name)
    try:
      return f.read().strip()
    finally:
      f.close()
  finally:
    cleanup(input_file_name)
    cleanup(output_file_name)

def main():
  if len(sys.argv) == 2:
    filename = sys.argv[1]
    try:
      image = Image.open(filename)
      if len(image.split()) == 4:
        # In case we have 4 channels, lets discard the Alpha.
        # Kind of a hack, should fix in the future some time.
        r, g, b, a = image.split()
        image = Image.merge("RGB", (r, g, b))
    except IOError:
      sys.stderr.write('ERROR: Could not open file "%s"\n' % filename)
      exit(1)
    print(image_to_string(image))
  elif len(sys.argv) == 4 and sys.argv[1] == '-l':
    lang = sys.argv[2]
    filename = sys.argv[3]
    try:
      image = Image.open(filename)
    except IOError:
      sys.stderr.write('ERROR: Could not open file "%s"\n' % filename)
      exit(1)
    print(image_to_string(image, lang=lang))
  else:
    sys.stderr.write('Usage: python pytesseract.py [-l language] input_file\n')
    exit(2)

if __name__ == '__main__':
  main()

以上……

以上这篇python下调用pytesseract识别某网站验证码的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • Python中利用Scipy包的SIFT方法进行图片识别的实例教程

    scipy scipy包包含致力于科学计算中常见问题的各个工具箱.它的不同子模块相应于不同的应用.像插值,积分,优化,图像处理,,特殊函数等等. scipy可以与其它标准科学计算程序库进行比较,比如GSL(GNU C或C++科学计算库),或者Matlab工具箱.scipy是Python中科学计算程序的核心包;它用于有效地计算numpy矩阵,来让numpy和scipy协同工作. 在实现一个程序之前,值得检查下所需的数据处理方式是否已经在scipy中存在了.作为非专业程序员,科学家总是喜欢重新发明造

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • Python验证码识别的方法

    本文实例讲述了Python验证码识别的方法.分享给大家供大家参考.具体实现方法如下: #encoding=utf-8 import Image,ImageEnhance,ImageFilter import sys image_name = "./22.jpeg" #去处 干扰点 im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(

  • 机器学习python实战之手写数字识别

    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • python实现识别相似图片小结

    文章简介 在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 如有错误,请多包涵和多多指教. 参考的文章和图片来源会在底部一一列出. 以及本篇文章所用的代码都会在底下给出github地址. 安装相关库 python用作图像处理的相关库主要有openCV(C++编写,提供了python语言的接口),PIL,

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

随机推荐