python中的Numpy二维数组遍历与二维数组切片后遍历效率比较

python-numpy使用中,可以用双层 for循环对数组元素进行访问,也可以切片成每一行后进行一维数组的遍历。

代码如下:

import numpy as np
import time
NUM = 160

a=np.random.random((NUM,NUM))
start = time.time()
for i in range(NUM):
    for j in range(NUM):
        if a[i][j] == 1.0:
            pass
end1 =  time.time()

for ii in range(NUM):
    b = a[ii,:]
    for jj in range(NUM):
        if b[jj] == 1.0:
            pass 
end2 =  time.time()
print("end1",end1-start)
print("end2",end2-end1)

由于生成的是[0,1)中的数,因此两种操作会遍历所有的元素。多轮测试后,耗时如下:

当NUM为160时:

end1 0.006983518600463867
end2 0.003988742828369141

当NUM为1600时:

end1 0.71415114402771
end2 0.45178747177124023

结论:切片后遍历更快
原因:
楼主还暂不明确

一个想法:

b=a[ii,:]

在numpy中,为了提高效率,这种切片出来的子矩阵其实都是原矩阵的引用而已,所以改变子矩阵,原矩阵还是会变的
所以在内层循环中,第二种方法是在那一行元素所在的内存进行寻找。而第一种方法是先定位到行,再定位到列,所以比较慢?
大家是怎么想的呢?

关于numba在小数据量下的速度慢于普通操作

什么是numba?

numba

实验比较:

import numpy as np
import time
NUM = 160
from numba import jit
a=np.random.random((NUM,NUM))

@jit(nopython=True)
def fun1(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass

def fun2(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass
    
@jit(nopython=True)
def fun3(a):
    for ii in range(NUM):
        b = a[ii,:]
        for jj in range(NUM):
            if b[jj] == 1.0:
                pass 

def fun4(a):
    for iii in range(NUM):
        b = a[iii,:]
        for jjj in range(NUM):
            if b[jjj] == 1.0:
                pass 

start = time.time()
fun1(a)
end1 =  time.time()
fun2(a)
end2 =  time.time()
fun3(a)
end3 =  time.time()
fun4(a)
end4 =  time.time()
print("end1",end1-start)
print("end2",end2-end1)
print("end3",end3-end2)
print("end4",end4-end3)

首先,当NUM为1600时,结果如下:

end1 0.2991981506347656 #无切片,有加速
end2 0.6372940540313721 #无切片,无加速
end3 0.08377814292907715 #有切片,有加速
end4 0.358079195022583   #有切片,无加速

其他条件相同的情况下,有切片的速度更快。同样,有numba加速的也比没加速的快。
但当NUM =160时,结果如下:

end1 0.29620814323425293   #无切片,有加速
end2 0.006980180740356445  #无切片,无加速
end3 0.08580684661865234   #有切片,有加速
end4 0.0029993057250976562 #有切片,无加速

有切片依旧比无切片的快。但是有numba加速的却比没有numba加速的慢。
原来@jit(nopython=True)只是对函数进行修饰,第一次调用会进行编译,编译成机器码,之后速度就会很快。

实验代码如下:

import numpy as np
import time
NUM = 160
from numba import jit
a=np.random.random((NUM,NUM))

@jit(nopython=True)
def fun1(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass

def fun2(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass
    
@jit(nopython=True)
def fun3(a):
    for ii in range(NUM):
        b = a[ii,:]
        for jj in range(NUM):
            if b[jj] == 1.0:
                pass 

def fun4(a):
    for iii in range(NUM):
        b = a[iii,:]
        for jjj in range(NUM):
            if b[jjj] == 1.0:
                pass 

for b in range(4):
    start = time.time()
    fun1(a)
    end1 =  time.time()
    fun2(a)
    end2 =  time.time()
    fun3(a)
    end3 =  time.time()
    fun4(a)
    end4 =  time.time()
    print("end1",end1-start)
    print("end2",end2-end1)
    print("end3",end3-end2)
    print("end4",end4-end3)
    print("---")

结果如下:

end1 0.29421305656433105
end2 0.0059833526611328125
end3 0.08181905746459961
end4 0.0029909610748291016
---
end1 0.0
end2 0.005949735641479492
end3 0.0
end4 0.004008769989013672
---
end1 0.0
end2 0.006977558135986328
end3 0.0
end4 0.00399017333984375
---
end1 0.0
end2 0.005974292755126953
end3 0.0
end4 0.003837108612060547
---

结论:

numba加速时,第一次需要编译,需要耗时。之后调用就不需要了。

到此这篇关于python中的Numpy二维数组遍历与二维数组切片后遍历效率比较的文章就介绍到这了,更多相关Numpy二维数组遍历与二维数组切片后遍历效率比较内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 如何将numpy二维数组中的np.nan值替换为指定的值

    基础知识: (1)np.nan表示该值不是一个数,比如数据中收入.年龄的缺失值:np.inf表示无穷大 (2)np.nan == np.nan 的结果为False (3)nan与任何数的操作结果均为nan,例如sum((np.nan,4)) 的结果为nan (4)一个ndarray数组t1,可以用np.isnan(t1) 定位到nan值的位置,再用t1[np.isnan(t1)] = 指定值 将nan替换为指定值 (5)np.nan_to_num(t1),可以将t1中的nan替换为0 (6)t1

  • Python 用NumPy创建二维数组的案例

    前言 上位机实战开发先放一放,今天来学习一个新的内容-NumPy的使用 1 一维数组 例:用普通方法生成一维数组 num = [0 for i in range(1,5)] # 创建一维数组 print(num) # 打印数组 print("-"*50) # 分割线 num[2]=6 # 将第三个元素修改位6 print(num) # 打印数组 print("-"*50) # 分割线 运行结果 例:用numpy生成一维数组 from numpy import * m

  • python中的Numpy二维数组遍历与二维数组切片后遍历效率比较

    在python-numpy使用中,可以用双层 for循环对数组元素进行访问,也可以切片成每一行后进行一维数组的遍历. 代码如下: import numpy as np import time NUM = 160 a=np.random.random((NUM,NUM)) start = time.time() for i in range(NUM):     for j in range(NUM):         if a[i][j] == 1.0:             pass end1

  • Python中的 Numpy 数组形状改变及索引切片

    目录 1.改变数组形状 2.索引和切片 1.改变数组形状 数组的shape属性返回一个元组,包括维度以及每个轴的元素数量,Numpy 还提供了一个reshape()方法,它可以改变数组的形状,返回一个新的数组. 例如: a = np.array([1,2,3,4,5,6,7,8]) 转换成二维数组: b = a.reshape((2,4)) 转换成三维数组: c = a.reshape((2,2,2)) 但是需要注意的是,修改后的数组元素个数与原数组元素个数必须是一致的,不一致会报错. 例如执行

  • Python中的Numpy 面向数组编程常见操作

    目录 数组编程 简单例子 逻辑条件作为数组操作 数学和统计方法 布尔数组的方法 排序 唯一值和其他的逻辑集合 数组编程 使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题.我们都知道向量化的数组操作比纯Python的等价实现在速度这一方面快很多,至于多少(一到两个数量级)甚至更多,生活需要慢节奏,但是计算就不可以了,掌握高效的计算模型,可以让数据分析如虎添翼! 简单例子 我们生成从-3.14--3.14,按照0.01的间

  • Python中的Numpy 矩阵运算

    目录 在学习线性代数时我们所接触的矩阵之间的乘法是矩阵的叉乘,有这样一个前提: 若矩阵A是m*n阶的,B是p*q阶的矩阵,AB能相乘,首先得满足:n=p,即A的列数要等于B的行数.运算的方法如下图: 当时学线性代数时老师教的更为直观记法: 点乘则是这样: 假如有a,b两个矩阵,在Matlab中我们实现点乘和叉乘的方式分别如下: a.*b %表示点乘 a*b %表示叉乘 下面我们来看看python中的操作: import numpy as np a = np.arange(1, 10).resha

  • Python中的Numpy 矩阵运算

    目录 在学习线性代数时我们所接触的矩阵之间的乘法是矩阵的叉乘,有这样一个前提: 若矩阵A是m*n阶的,B是p*q阶的矩阵,AB能相乘,首先得满足:n=p,即A的列数要等于B的行数.运算的方法如下图: 当时学线性代数时老师教的更为直观记法: 点乘则是这样: 假如有a,b两个矩阵,在Matlab中我们实现点乘和叉乘的方式分别如下: a.*b %表示点乘 a*b %表示叉乘 下面我们来看看python中的操作: import numpy as np a = np.arange(1, 10).resha

  • 在python中利用numpy求解多项式以及多项式拟合的方法

    构建一个二阶多项式:x^2 - 4x + 3 多项式求解 >>> p = np.poly1d([1,-4,3]) #二阶多项式系数 >>> p(0) #自变量为0时多项式的值 3 >>> p.roots #多项式的根 array([3., 1.]) >>> p(p.roots) #多项式根处的值 array([0., 0.]) >>> p.order #多项式的阶数 2 >>> p.coeffs #

  • python中利用numpy.array()实现俩个数值列表的对应相加方法

    小编想把用python将列表[1,1,1,1,1,1,1,1,1,1] 和 列表 [2,2,2,2,2,2,2,2,2,2]对应相加成[3,3,3,3,3,3,3,3,3,3]. 代码如下: import numpy a = numpy.array([1,1,1,1,1,1,1,1,1,1]) b = numpy.array([2,2,2,2,2,2,2,2,2,2]) c = a + b print(type(c)) print(list(c)) 输出结果为: <class 'numpy.nd

  • Python中的numpy数组模块

    目录 一.numpy简介 1.numpy库作用: 2.NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含: 3.NumPy 应用 二.为什么用numpy 三.创建numpy数组 1.将列表转换创建numpy数组,可选择显式指定dtype 2.arange方式创建numpy数组 3.其他方式创建numpy数组 4.numpy或pandas中reshape()重塑形状(行列转换)的用法 4.numpy.random生成随机数 5. fromstring/fromfunction(了解)

  • Python中优化NumPy包使用性能的教程

    NumPy是Python中众多科学软件包的基础.它提供了一个特殊的数据类型ndarray,其在向量计算上做了优化.这个对象是科学数值计算中大多数算法的核心. 相比于原生的Python,利用NumPy数组可以获得显著的性能加速,尤其是当你的计算遵循单指令多数据流(SIMD)范式时.然而,利用NumPy也有可能有意无意地写出未优化的代码. 在这篇文章中,我们将看到一些技巧,这些技巧可以帮助你编写高效的NumPy代码.我们首先看一下如何避免不必要的数组拷贝,以节省时间和内存.因此,我们将需要深入Num

  • Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 复制代码 代码如下: >>> import numpy as np>>> print np.version.version1.6.2

随机推荐