Java 进阶使用 Lambda 表达式实现超强的排序功能

目录
  • 基于Comparator排序
  • 使用 Lambda 表达式替换Comparator匿名内部类
  • 通过静态方法抽取公共的 Lambda 表达式
  • 借助Comparator的comparing方法
  • 多条件排序
  • 在Stream中进行排序
  • 倒序排列
    • 调转排序判断
    • 在Comparator.comparing中定义排序反转
    • 在Stream中定义排序反转
  • null 值的判断
    • 元素是 null 的笨拙实现
    • 排序条件的字段是 null
  • 文末总结

我们在系统开发过程中,对数据排序是很常见的场景。一般来说,我们可以采用两种方式:

  • 借助存储系统(SQL、NoSQL、NewSQL 都支持)的排序功能,查询的结果即是排好序的结果
  • 查询结果为无序数据,在内存中排序。

今天要说的是第二种排序方式,在内存中实现数据排序。

首先,我们定义一个基础类,后面我们将根据这个基础类演示如何在内存中排序。

@Data
@NoArgsConstructor
@AllArgsConstructor
public class Student {
    private String name;
    private int age;

    @Override
    public boolean equals(Object o) {
        if (this == o) {
            return true;
        }
        if (o == null || getClass() != o.getClass()) {
            return false;
        }
        Student student = (Student) o;
        return age == student.age && Objects.equals(name, student.name);
    }

    @Override
    public int hashCode() {
        return Objects.hash(name, age);
    }
}

基于Comparator排序

在 Java8 之前,我们都是通过实现Comparator接口完成排序,比如:

new Comparator<Student>() {
    @Override
    public int compare(Student h1, Student h2) {
        return h1.getName().compareTo(h2.getName());
    }
};

这里展示的是匿名内部类的定义,如果是通用的对比逻辑,可以直接定义一个实现类。使用起来也比较简单,如下就是应用:

@Test
void baseSortedOrigin() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    Collections.sort(students, new Comparator<Student>() {
        @Override
        public int compare(Student h1, Student h2) {
            return h1.getName().compareTo(h2.getName());
        }
    });
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

这里使用了 Junit5 实现单元测试,用来验证逻辑非常适合。

因为定义的Comparator是使用name字段排序,在 Java 中,String类型的排序是通过单字符的 ASCII 码顺序判断的,J排在T的前面,所以Jerry排在第一个。

使用 Lambda 表达式替换Comparator匿名内部类

使用过 Java8 的 Lamdba 的应该知道,匿名内部类可以简化为 Lambda 表达式为:

Collections.sort(students, (Student h1, Student h2) -> h1.getName().compareTo(h2.getName()));

在 Java8 中,List类中增加了sort方法,所以Collections.sort可以直接替换为:

students.sort((Student h1, Student h2) -> h1.getName().compareTo(h2.getName()));

根据 Java8 中 Lambda 的类型推断,我们可以将指定的Student类型简写:

students.sort((h1, h2) -> h1.getName().compareTo(h2.getName()));

至此,我们整段排序逻辑可以简化为:

@Test
void baseSortedLambdaWithInferring() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    students.sort((h1, h2) -> h1.getName().compareTo(h2.getName()));
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

通过静态方法抽取公共的 Lambda 表达式

我们可以在Student中定义一个静态方法:

public static int compareByNameThenAge(Student s1, Student s2) {
    if (s1.name.equals(s2.name)) {
        return Integer.compare(s1.age, s2.age);
    } else {
        return s1.name.compareTo(s2.name);
    }
}

这个方法需要返回一个int类型参数,在 Java8 中,我们可以在 Lambda 中使用该方法:

@Test
void sortedUsingStaticMethod() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    students.sort(Student::compareByNameThenAge);
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

借助Comparator的comparing方法

在 Java8 中,Comparator类新增了comparing方法,可以将传递的Function参数作为比较元素,比如:

@Test
void sortedUsingComparator() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    students.sort(Comparator.comparing(Student::getName));
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

多条件排序

我们在静态方法一节中展示了多条件排序,还可以在Comparator匿名内部类中实现多条件逻辑:

@Test
void sortedMultiCondition() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12),
            new Student("Jerry", 13)
    );
    students.sort((s1, s2) -> {
        if (s1.getName().equals(s2.getName())) {
            return Integer.compare(s1.getAge(), s2.getAge());
        } else {
            return s1.getName().compareTo(s2.getName());
        }
    });
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

从逻辑来看,多条件排序就是先判断第一级条件,如果相等,再判断第二级条件,依次类推。在 Java8 中可以使用comparing和一系列thenComparing表示多级条件判断,上面的逻辑可以简化为:

@Test
void sortedMultiConditionUsingComparator() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12),
            new Student("Jerry", 13)
    );
    students.sort(Comparator.comparing(Student::getName).thenComparing(Student::getAge));
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

这里的thenComparing方法是可以有多个的,用于表示多级条件判断,这也是函数式编程的方便之处。

在Stream中进行排序

Java8 中,不但引入了 Lambda 表达式,还引入了一个全新的流式 API:Stream API,其中也有sorted方法用于流式计算时排序元素,可以传入Comparator实现排序逻辑:

@Test
void streamSorted() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final Comparator<Student> comparator = (h1, h2) -> h1.getName().compareTo(h2.getName());
    final List<Student> sortedStudents = students.stream()
            .sorted(comparator)
            .collect(Collectors.toList());
    Assertions.assertEquals(sortedStudents.get(0), new Student("Jerry", 12));
}

同样的,我们可以通过 Lambda 简化书写:

@Test
void streamSortedUsingComparator() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final Comparator<Student> comparator = Comparator.comparing(Student::getName);
    final List<Student> sortedStudents = students.stream()
            .sorted(comparator)
            .collect(Collectors.toList());
    Assertions.assertEquals(sortedStudents.get(0), new Student("Jerry", 12));
}

倒序排列

调转排序判断

排序就是根据compareTo方法返回的值判断顺序,如果想要倒序排列,只要将返回值取返即可:

@Test
void sortedReverseUsingComparator2() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final Comparator<Student> comparator = (h1, h2) -> h2.getName().compareTo(h1.getName());
    students.sort(comparator);
    Assertions.assertEquals(students.get(0), new Student("Tom", 10));
}

可以看到,正序排列的时候,我们是h1.getName().compareTo(h2.getName()),这里我们直接倒转过来,使用的是h2.getName().compareTo(h1.getName()),也就达到了取反的效果。在 Java 的Collections中定义了一个java.util.Collections.ReverseComparator内部私有类,就是通过这种方式实现元素反转。

借助Comparatorreversed方法倒序

在 Java8 中新增了reversed方法实现倒序排列,用起来也是很简单:

@Test
void sortedReverseUsingComparator() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final Comparator<Student> comparator = (h1, h2) -> h1.getName().compareTo(h2.getName());
    students.sort(comparator.reversed());
    Assertions.assertEquals(students.get(0), new Student("Tom", 10));
}

在Comparator.comparing中定义排序反转

comparing方法还有一个重载方法,java.util.Comparator#comparing(java.util.function.Function<? super T,? extends U>, java.util.Comparator<? super U>),第二个参数就可以传入Comparator.reverseOrder(),可以实现倒序:

@Test
void sortedUsingComparatorReverse() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    students.sort(Comparator.comparing(Student::getName, Comparator.reverseOrder()));
    Assertions.assertEquals(students.get(0), new Student("Jerry", 12));
}

在Stream中定义排序反转

Stream中的操作与直接列表排序类似,可以反转Comparator定义,也可以使用Comparator.reverseOrder()反转。实现如下:

@Test
void streamReverseSorted() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final Comparator<Student> comparator = (h1, h2) -> h2.getName().compareTo(h1.getName());
    final List<Student> sortedStudents = students.stream()
            .sorted(comparator)
            .collect(Collectors.toList());
    Assertions.assertEquals(sortedStudents.get(0), new Student("Tom", 10));
}

@Test
void streamReverseSortedUsingComparator() {
    final List<Student> students = Lists.newArrayList(
            new Student("Tom", 10),
            new Student("Jerry", 12)
    );
    final List<Student> sortedStudents = students.stream()
            .sorted(Comparator.comparing(Student::getName, Comparator.reverseOrder()))
            .collect(Collectors.toList());
    Assertions.assertEquals(sortedStudents.get(0), new Student("Tom", 10));
}

null 值的判断

前面的例子中都是有值元素排序,能够覆盖大部分场景,但有时候我们还是会碰到元素中存在null的情况:

  1. 列表中的元素是 null
  2. 列表中的元素参与排序条件的字段是 null

如果还是使用前面的那些实现,我们会碰到NullPointException异常,即 NPE,简单演示一下:

@Test
void sortedNullGotNPE() {
    final List<Student> students = Lists.newArrayList(
            null,
            new Student("Snoopy", 12),
            null
    );
    Assertions.assertThrows(NullPointerException.class,
            () -> students.sort(Comparator.comparing(Student::getName)));
}

所以,我们需要考虑这些场景。

元素是 null 的笨拙实现

最先想到的就是判空:

@Test
void sortedNullNoNPE() {
    final List<Student> students = Lists.newArrayList(
            null,
            new Student("Snoopy", 12),
            null
    );
    students.sort((s1, s2) -> {
        if (s1 == null) {
            return s2 == null ? 0 : 1;
        } else if (s2 == null) {
            return -1;
        }
        return s1.getName().compareTo(s2.getName());
    });

    Assertions.assertNotNull(students.get(0));
    Assertions.assertNull(students.get(1));
    Assertions.assertNull(students.get(2));
}

我们可以将判空的逻辑抽取出一个Comparator,通过组合方式实现:

class NullComparator<T> implements Comparator<T> {
    private final Comparator<T> real;

    NullComparator(Comparator<? super T> real) {
        this.real = (Comparator<T>) real;
    }

    @Override
    public int compare(T a, T b) {
        if (a == null) {
            return (b == null) ? 0 : 1;
        } else if (b == null) {
            return -1;
        } else {
            return (real == null) ? 0 : real.compare(a, b);
        }
    }
}

在 Java8 中已经为我们准备了这个实现。

使用Comparator.nullsLastComparator.nullsFirst

使用Comparator.nullsLast实现null在结尾:

@Test
void sortedNullLast() {
    final List<Student> students = Lists.newArrayList(
            null,
            new Student("Snoopy", 12),
            null
    );
    students.sort(Comparator.nullsLast(Comparator.comparing(Student::getName)));
    Assertions.assertNotNull(students.get(0));
    Assertions.assertNull(students.get(1));
    Assertions.assertNull(students.get(2));
}

使用Comparator.nullsFirst实现null在开头:

@Test
void sortedNullFirst() {
    final List<Student> students = Lists.newArrayList(
            null,
            new Student("Snoopy", 12),
            null
    );
    students.sort(Comparator.nullsFirst(Comparator.comparing(Student::getName)));
    Assertions.assertNull(students.get(0));
    Assertions.assertNull(students.get(1));
    Assertions.assertNotNull(students.get(2));
}

是不是很简单,接下来我们看下如何实现排序条件的字段是 null 的逻辑。

排序条件的字段是 null

这个就是借助Comparator的组合了,就像是套娃实现了,需要使用两次Comparator.nullsLast,这里列出实现:

@Test
void sortedNullFieldLast() {
    final List<Student> students = Lists.newArrayList(
            new Student(null, 10),
            new Student("Snoopy", 12),
            null
    );
    final Comparator<Student> nullsLast = Comparator.nullsLast(
            Comparator.nullsLast( // 1
                    Comparator.comparing(
                            Student::getName,
                            Comparator.nullsLast( // 2
                                    Comparator.naturalOrder() // 3
                            )
                    )
            )
    );
    students.sort(nullsLast);
    Assertions.assertEquals(students.get(0), new Student("Snoopy", 12));
    Assertions.assertEquals(students.get(1), new Student(null, 10));
    Assertions.assertNull(students.get(2));
}

代码逻辑如下:

  • 代码 1 是第一层 null-safe 逻辑,用于判断元素是否为 null;
  • 代码 2 是第二层 null-safe 逻辑,用于判断元素的条件字段是否为 null;
  • 代码 3 是条件Comparator,这里使用了Comparator.naturalOrder(),是因为使用了String排序,也可以写为String::compareTo。如果是复杂判断,可以定义一个更加复杂的Comparator,组合模式就是这么好用,一层不够再套一层。

文末总结

本文演示了使用 Java8 中使用 Lambda 表达式实现各种排序逻辑,新增的语法糖真香。

到此这篇关于Java 进阶使用 Lambda 表达式实现超强的排序功能的文章就介绍到这了,更多相关java Lambda 表达式排序内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • lambda表达式解决java后台分组排序过程解析

    需求:按照起始日期查询出数据库里一段连续日期的住院信息. 问题:数据库里的住院信息可能不是完整的,也就是在给出的日期区间里只有若干天的数据,缺少某些日期的数据. 解决: 1.需要我们先按日期分组查出数据库里有的数据: 2.然后遍历日期,将不存在的日期以日期为key,value为null插入集合里: 3.对集合里的key即日期进行排序. 注:这里分组和排序都用JDK8的新特性lambda表达式 /** * * @param startTime 开始时间 * @param endTime 结束时间

  • java8 forEach结合Lambda表达式遍历 List操作

    我就废话不多说了,大家还是直接看代码吧~ @Test void testJava8ForeachMap() { Map<String, Integer> items = new HashMap<>(); items.put("A", 10); items.put("B", 20); items.put("C", 30); items.put("D", 40); items.put("E&quo

  • Java Lambda表达式原理及多线程实现

    1.使用Lambda表达式实现多线程 public static void main(String[] args) { //使用匿名内部类的方式,实现多线程 new Thread(new Runnable() { @Override public void run() { System.out.println(Thread.currentThread().getName() + "新线程创建了!"); } }).start(); //使用Lambda表达式,实现多线程 new Thre

  • Java8 用Lambda表达式给List集合排序的实现

    Lambda用到了JDK8自带的一个函数式接口Comparator<T>. 准备一个Apple类 public class Apple { private int weight; private String color; public Apple(){} public Apple(int weight) { this.weight = weight; } public Apple(int weight, String color) { this.weight = weight; this.c

  • Java 进阶使用 Lambda 表达式实现超强的排序功能

    目录 基于Comparator排序 使用 Lambda 表达式替换Comparator匿名内部类 通过静态方法抽取公共的 Lambda 表达式 借助Comparator的comparing方法 多条件排序 在Stream中进行排序 倒序排列 调转排序判断 在Comparator.comparing中定义排序反转 在Stream中定义排序反转 null 值的判断 元素是 null 的笨拙实现 排序条件的字段是 null 文末总结 我们在系统开发过程中,对数据排序是很常见的场景.一般来说,我们可以采

  • 详解Java中的Lambda表达式

    简介 Lambda表达式是Java SE 8中一个重要的新特性.lambda表达式允许你通过表达式来代替功能接口. lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块). Lambda表达式还增强了集合库. Java SE 8添加了2个对集合数据进行批量操作的包: java.util.function 包以及java.util.stream 包. 流(stream)就如同迭代器(iterator),但附加了许多额外的功能.

  • Java中使用Lambda表达式和函数编程示例

    目录 1.简单介绍 2.Lambdas和Scopes 3.Lambdas与局部变量 4.Lambda体与局部变量 5.Lambdas和'This'和'Super'关键字 6.Lambdas和Exceptions 7.预定义的功能接口 1.简单介绍 第一个示例演示变量声明上下文中的lambda.它将lambda()->{System.out.println("running"):}分配给可运行接口类型的变量r. 第二个示例类似,但演示了赋值上下文中的lambda(到先前声明的变量r

  • 关于Java 中的 Lambda 表达式

    这篇文章我们将讨论关于Java 中的 Lambda 表达式,Lambda 表达式是 Java 涉足函数式编程的过程.它接受参数并将其应用于表达式或代码块.以下是语法的基本示例: (parameter1, parameter2) => expression 或者 (parameter1, parameter2) => {code block} Lambda 表达式非常有限,如果它不是 void,则必须立即返回一个值.他们不能使用诸如 if 或 for 之类的关键字来保持简单性.如果需要更多行代码

  • Java详细分析Lambda表达式与Stream流的使用方法

    目录 Lambda Stream流 Lambda Lambda 表达式是一个匿名函数,我们可以把 lambda 表达式理解为一段可以传递的代码(将代码段像数据一样传递).使用它可以写出更简洁, 更灵活的代码.作为一种更紧凑的代码风格,使 java 语言的表达式能力得到的提升. 我们可以知道, Lambda表达式是为简化语法而存在的 ArrayList<String> list = new ArrayList<>(); list.add("a"); list.ad

  • Java学习之Lambda表达式的使用详解

    目录 Lamda表达式 函数式接口 Lambda表达式的推导 函数式接口的不同类型 Lambda表达式与函数式接口的简单应用 Lambda表达式的优缺点 Lamda表达式 λ希腊字母表中排序第11位的字母,英文名称为Lambda,它Lambda表达式是Java SE 8中一个重要的新特性,允许通过表达式来代替功能接口,它与其他方法相同,提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块),实际上是属于函数式编程的概念: 语法如下: (参数) ->表达式 或

  • 深入理解Java中的Lambda表达式

    Java 8 开始出现,带来一个全新特性:使用 Lambda 表达式 (JSR-335) 进行函数式编程.今天我们要讨论的是 Lambda 的其中一部分:虚拟扩展方法,也叫做公共辩护(defender)方法.该特性可以让你在接口定义中提供方法的默认实现.例如你可以为已有的接口(如 List 和 Map)声明一个方法定义,这样其他开发者就无需重新实现这些方法,有点像抽象类,但实际却是接口.当然,Java 8 理论上还是兼容已有的库. 虚拟扩展方法为 Java 带来了多重继承的特性,尽管该团队声称与

  • 快速入门Java中的Lambda表达式

    Lambda简介 Lambda表达式是Java SE 8中一个重要的新特性.lambda表达式允许你通过表达式来代替功能接口. lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块). Lambda表达式还增强了集合库. Java SE 8添加了2个对集合数据进行批量操作的包: java.util.function 包以及 java.util.stream 包. 流(stream)就如同迭代器(iterator),但附加了许多

  • Java 8 引入lambda表达式的原因解析

    在Java8出现之前,如果你想传递一段代码到另一个方法里是很不方便的.你几乎不可能将代码块到处传递,因为Java是一个面向对象的语言,因此你要构建一个属于某个类的对象,由它的某个方法来放置你想传递的代码块. 下面看两个非常典型的例子,构造线程与比较器: 构造线程: 我们要想在另一个线程中执行一些代码逻辑时,通常会将代码放在一个实现Runnable接口的run方法当中,如下图: public static void main(String[] args) { myThread t = new my

  • Java语法中Lambda表达式无法抛出异常的解决

    目录 Lambda表达式无法抛出异常 1.Demo 例子 2.编译通过 lambda表达式异常应该如何处理 我们看一个例子 Lambda表达式无法抛出异常 1.Demo 例子 错误提示 - Unhandled exception: java.io.IOException; public static void main(String[] args) throws IOException{ Stream.of("a", "b", "c").forE

随机推荐