python实现使用遗传算法进行图片拟合

目录
  • 引言
  • 预备知识及准备工作
    • 打开图片
    • 随机生成生物族群
    • 按照生物性状画图
    • 对比生物个体和目标图片的相似度
    • 保存图片
  • 算法主体
    • 交叉互换
    • 基因突变
    • 基因片段易位
    • 增加基因片段
    • 减少基因片段
    • 变异
    • 繁殖
    • 淘汰
    • 拟合
  • 示例展示
    • 降低图片分辨率
    • 原图
    • 拟合过程展示
  • 完整代码下载(已封装成类)

引言

算法思路

假设我们有这样一个生物族群,他们的每个基因片段都是一个个三角形(即只含三个点和颜色信息),他们每个个体表现出的性状就是若干个三角形叠加在一起。假设我们有一张图片可以作为这种生物族群最适应环境的性状,即长得越像这张图片的越能适应环境,越不像这张图片的越容易被淘汰。

当然作为一个正常的生物族群,他应该也会有正常的繁衍以产生新个体。产生新个体的过程中来自父亲和母亲的基因会进行交叉互换和变异,变异又可以有增加基因片段、减少基因片段以及不同位置的基因片段顺序互换。

但是一个族群不能够无限的繁殖,我们假设环境资源只能容纳有限的生物族群规模,所以我们在产生足够多的后代之后就要把他们放到族群里与族群内部进行竞争淘汰。这样一来,通过不断地淘汰,这个族群就会越来越像我们给定的图片。这就是算法的基本思路。

流程图

下面我们来看一下实现过程,为了方便解释,我们会结合python建立类似于伪代码的函数进行解释,不能直接运行,具体可运行的代码可直接下载参照最后的类封装的完整代码

预备知识及准备工作

打开图片

我们使用imageio中的imread打开图片,这里为了方便后续使用我们建立OpenImg函数,返回打开的图片img(格式为array),图片的格式(方便后期图片的保存),图片的大小:row和col(为后期画图做准备)。

from imageio import imread

def OpenImg(imgPath):
	img = imread(imgPath)
    row, col = img.shape[0], img.shape[1]
    return img, imgPath.split(".")[-1], row, col

随机生成生物族群

我们假设一个族群的最大生物个数为max_group,用groups来表示族群,g为族群内的生物个体,运用随机数随机产生个体。

from random import choice

for i in range(max_group):
	g = []
    for j in range(features):
	    tmp = [[choice(np.linspace(0, row, features)), choice(np.linspace(0, col, features))] for x in range(3)]
        tmp.append("#" + ''.join(choice('0123456789ABCDEF') for x in range(6)))

    g.append(tmp.copy())
    groups.append(g.copy())

按照生物性状画图

我们使用PIL画图,首先我们建立一个空白的画布,然后再将个体的特征(三角形)画到图上。

from PIL import Image, ImageDraw

def to_image(g):
	array = np.ndarray((img.shape[0], img.shape[1], img.shape[2]), np.uint8)
	array[:, :, 0] = 255
	array[:, :, 1] = 255
	array[:, :, 2] = 255
	newIm1 = Image.fromarray(array)
	draw = ImageDraw.Draw(newIm1)
	for d in g:
		draw.polygon((d[0][0], d[0][1], d[1][0], d[1][1], d[2][0], d[2][1]), d[3])

	return newIm1

对比生物个体和目标图片的相似度

使用structural_similarity对比两个图片的相似度,此时两个图片都应该是array类型

from skimage.metrics import structural_similarity

def getSimilar(g) -> float:
	newIm1 = to_image(g)
    ssim = structural_similarity(np.array(img), np.array(newIm1), multichannel=True)
    return ssim

保存图片

调用我们之前建立好的to_image函数先将个体转换成图片,然后将图片保存即可。

def draw_image(g, cur, imgtype):
    image1 = to_image(g)
    image1.save(os.path.join(str(cur) + "." + imgtype))

算法主体

交叉互换

考虑到后期的基因片段的增添和减少,所以应该分为两步,其一是相重合的位置进行交叉互换,以及对于多出来的尾部进行交叉互换,我们按照随机率random_rate和重合位置长度min_locate来确定交换的位数。然后我们使用sample选出若干位置进行互换。交换结束后再对尾部进行互换

random_rate = random()

def exchange(father, mother)->[]:
	# 交换
	# 随机生成互换个数
	min_locate = min(len(father), len(mother))
	n = randint(0, int(random_rate * min_locate))
	# 随机选出多个位置
	selected = sample(range(0, min_locate), n)
	# 交换内部
	for s in selected:
		father[s], mother[s] = mother[s], father[s]

  	# 交换尾部
	locat = randint(0, min_locate)
	fhead = father[:locat].copy()
	mhead = mother[:locat].copy()

	ftail = father[locat:].copy()
	mtail = mother[locat:].copy()

	# print(fhead, ftail, mhead, mtail)
	fhead.extend(mtail)
	father = fhead
	mhead.extend(ftail)
	mother = mhead
	return [father, mother]

基因突变

随机选择的原理和目的与上面类似,这里我们把重新生成某个基因片段的信息看作基因突变。

random_rate = random()

def mutation(gen):
	# 突变
	# 随机生成变异个数
	n = int(randint(1, 100) / 1000 * len(gen))
	selected = sample(range(0, len(gen)), n)

	for s in selected:
		tmp = [[choice(np.linspace(0, row, 100)), choice(np.linspace(0, col, 100))] for x in	range(3)]
		tmp.append("#" + ''.join(choice('0123456789ABCDEF') for x in range(6)))
		gen[s] = tmp

	return gen

基因片段易位

在个体的基因组内随机选择基因片段进行位置互换。

def move(gen):
	# 易位
	exchage = int(randint(1, 100) / 1000 * len(gen))
	for e in range(exchage):
		sec1 = randint(0, len(gen) - 1)
		sec2 = randint(0, len(gen) - 1)

		gen[sec1], gen[sec2] = gen[sec2], gen[sec1]

	return gen

增加基因片段

直接在个体基因组后面添加随机产生的基因片段即可。

features = 100
def add(gen):
	# 增加
	n = int(randint(1, 100) / 1000 * len(gen))
	for s in range(n):
		tmp = [[choice(np.linspace(0, row,features)),choice(np.linspace(0, col, features))] for x in range(3)]
		tmp.append("#" + ''.join(choice('0123456789ABCDEF') for x in range(6)))
		gen.append(tmp)

	return gen

减少基因片段

随机减少个体的若干基因片段

def cut(self, gen):
    # 减少
	n = int(randint(1, 100) / 1000 * len(gen))
	selected = sample(range(0, len(gen)), n)

	g = []
	for gp in range(len(gen)):
		if gp not in selected:
			g.append(gen[gp])

    return g

变异

以此调用以上的突变、易位、增添和减少产生4种状态的基因片段

 def variation(gen):
	# 变异
	gen = mutation(gen.copy())
	gen1 = move(gen.copy())
	gen2 = add(gen1.copy())
	gen3 = cut(gen2.copy())
	return [gen, gen1, gen2, gen3]

繁殖

繁殖过程包括交叉互换和变异,直接调用之前构造的函数即可

def breeds(father, mother):
	new1, new2 = exchange(father.copy(), mother.copy())
	# 变异
	new3, new4, new5, new6 = variation(father.copy())
	new7, new8, new9, new10 = variation(mother.copy())

	return [new1, new2, new3, new4, new5, new6, new7, new8, new9, new10]

淘汰

建立个体和其与目标的相似度相关的映射关系,并按照相似度排序,然后去除相似度较低的个体,直到剩余生物个体的数量为max_group为止。在这个函数中我们还返回了一个最优个体的相似度来方便监测。

def eliminated(groups):
	group_dict = dict()
	for gp in range(len(groups)):
		group_dict[gp] = getSimilar(groups[gp])

	group_dict = {key: value for key, value in sorted(group_dict.items(), key=lambda item: item[1], reverse=True)}
	g = []
	for key in list(group_dict.keys())[:max_group]:
		g.append(groups[key].copy())

	groups = g.copy()
	return groups, list(group_dict.values())[0]

拟合

拟合过程先要进行若干次的繁殖,为了保证每次繁殖的个体数我们规定其至少选择最大个体数的一半数量的次数进行繁殖,繁殖之后的个体加入到种群当作和之前种群中的个体一起进行淘汰。通过这个过程我们每次淘汰都会将与目标差距最大的个体淘汰。

def breeds(father, mother):
	new1, new2 = exchange(father.copy(), mother.copy())
	# 变异
	new3, new4, new5, new6 = variation(father.copy())
	new7, new8, new9, new10 = variation(mother.copy())

	return [new1, new2, new3, new4, new5, new6, new7, new8, new9, new10]

示例展示

拟合时建议选择分辨率低的图片,如果选择的图片分辨率较高,可以使用以下代码降低图片分辨率

降低图片分辨率

from imageio import imread
from PIL import Image

imgPath = input("输入图片路径")
img = imread(imgPath)
img = img[::2, ::2, :]
img = Image.fromarray(img)
img.save(imgPath)

原图

我们以拟合一个小蓝鸟和一个心形为例来展示拟合过程


拟合过程展示

代码实现(这里已经事先将重复图片删除了)

import os
import math
import matplotlib.pyplot as plt
import matplotlib.image as image

path = "./xl"
length = len(os.listdir(path))
row = col = math.ceil(math.sqrt(length))
x = 1

lst = []
for d in os.listdir(path):
    lst.append(int(d.split('.')[0]))
lst = sorted(lst)

for l in lst:
    img = image.imread(os.path.join(path, str(l)+'.png'))
    plt.xticks([])
    plt.yticks([])
    plt.subplot(row, col, x)
    plt.imshow(img)
    plt.xticks([])
    plt.yticks([])
    plt.title(str(l))
    x += 1

plt.savefig(path)
plt.show()

效果

完整代码下载(已封装成类)

GitHub下载地址(推荐):
https://github.com/AiXing-w/Python-Intelligent-Optimization-Algorithms

到此这篇关于python实现使用遗传算法进行图片拟合的文章就介绍到这了,更多相关python 图片拟合内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现图片查找轮廓、多边形拟合、最小外接矩形代码

    1.概述 经常用到轮廓查找和多边形拟合等opencv操作,因此记录以备后续使用.本文代码中的阈值条件对图片没有实际意义,仅仅是为了测试. 原图为: 2.测试代码: import cv2 import numpy as np img = cv2.imread('/home/yasin/coffe.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, contours, hierarchy = cv2.findContours(img_g

  • python实现使用遗传算法进行图片拟合

    目录 引言 预备知识及准备工作 打开图片 随机生成生物族群 按照生物性状画图 对比生物个体和目标图片的相似度 保存图片 算法主体 交叉互换 基因突变 基因片段易位 增加基因片段 减少基因片段 变异 繁殖 淘汰 拟合 示例展示 降低图片分辨率 原图 拟合过程展示 完整代码下载(已封装成类) 引言 算法思路 假设我们有这样一个生物族群,他们的每个基因片段都是一个个三角形(即只含三个点和颜色信息),他们每个个体表现出的性状就是若干个三角形叠加在一起.假设我们有一张图片可以作为这种生物族群最适应环境的性

  • python抓取网页中图片并保存到本地

    在上篇文章给大家分享PHP源码批量抓取远程网页图片并保存到本地的实现方法,感兴趣的朋友可以点击了解详情. #-*-coding:utf-8-*- import os import uuid import urllib2 import cookielib '''获取文件后缀名''' def get_file_extension(file): return os.path.splitext(file)[1] '''創建文件目录,并返回该目录''' def mkdir(path): # 去除左右两边的

  • python利用Guetzli批量压缩图片

    Google 又开源了,这次开源了一款图像算法工具 Guetzli.Guetzli,在瑞士德语中是"cookie(曲奇)"的意思,是一个针对数码图像和网页图像的 JPEG 编码器,能够通过产生更小的 JPEG 文件来达到更快的在线体验,并且同时保持与当前浏览器,图像处理应用和 JPEG 标准的兼容性.Google 称 Guetzli 创建高质量的 JPEG 图像文件的大小比当前的压缩方法要再小 35%. 今天玩了下谷歌的开源图片压缩工具Guetzli,发现单张图片压缩效果还是不错的,就

  • python 实现一个贴吧图片爬虫的示例

    今天没事回家写了个贴吧图片下载程序,工具用的是PyCharm,这个工具很实用,开始用的Eclipse,但是再使用类库或者其它方便并不实用,所以最后下了个专业开发python程序的工具,开发环境是Python2,因为大学时自学的是python2 第一步:就是打开cmd命令,输入pip install lxml 如图 第二步:下载一个chrome插件:专门用来将html文件转为xml用xpth技术定位 在页面按下Ctrl+Shift+X即可打开插件进行页面分析 如下图 图中的黑色方框左边填写xpth

  • python将文本转换成图片输出的方法

    本文实例讲述了python将文本转换成图片输出的方法.分享给大家供大家参考.具体实现方法如下: #-*- coding:utf-8 -*- from PIL import Image,ImageFont,ImageDraw text = u'欢迎访问我们,http://www.jb51.net' font = ImageFont.truetype("msyh.ttf",18) lines = [] line ='' for word in text.split(): print wor

  • python好玩的项目—色情图片识别代码分享

    一.实验简介 本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域 1.1. 知识点 Python 3 的模块的安装 Python 3 基础知识 肤色像素检测与皮肤区域划分算法 Pillow模块的使用 argparse 模块的使用 1.2. 效果展示 二.实验步骤 2.1. 安装包 PIL 2009年之后就没有更新了,也不支持 Python3 ,于是有了 Alex Clark 领导的公益项目 Pillow,Pillow 是一

  • Python实现简单的获取图片爬虫功能示例

    本文实例讲述了Python实现简单的获取图片爬虫功能.分享给大家供大家参考,具体如下: 简单Python爬虫,获得网页上的照片 #coding=utf-8 import urllib import re def getHtml(url): page = urllib.urlopen(url) html = page.read() return html def getImg(html): reg = r'src="(.+?\.jpg)" pic_ext' imgre = re.comp

  • python通过pil为png图片填充上背景颜色的方法

    本文实例讲述了python通过pil为png图片填充上背景颜色的方法.分享给大家供大家参考.具体分析如下: png图片有些是没有背景颜色,如果希望以单色(比如白色)填充背景,可以使用下面的代码,这段代码将当前目录下的 jb51.net.png图片填充了白色背景. 使用指定的颜色的背景色即可,然后把该图片用alpha通道填充到该单色背景上.  比如下面使用白色背景: im = Image.open('jb51.net.png') x,y = im.size try: # 使用白色来填充背景 fro

  • python通过pil模块获得图片exif信息的方法

    本文实例讲述了python通过pil模块获得图片exif信息的方法.分享给大家供大家参考.具体分析如下: python的pil模块功能超级强大,不但可以用来处理图片也可以用来获取图片的exif数据 from PIL import Image #code from http://www.jb51.net img = Image.open('img.jpg') exif_data = img._getexif() 希望本文所述对大家的Python程序设计有所帮助.

  • python使用PythonMagick将jpg图片转换成ico图片的方法

    本文实例讲述了python使用PythonMagick将jpg图片转换成ico图片的方法.分享给大家供大家参考.具体分析如下: 这里使用到了PythonMagick模块,关于PythonMagick模块和ImageMagick的详细信息请参考:http://www.imagemagick.org/. 下面这段代码可以讲jpg图片转换成ico图标格式. # -*- coding: utf-8 -*- import PythonMagick img = PythonMagick.Image("c:/

随机推荐