Pandas读取行列数据最全方法

1、读取方法有按行(单行,多行连续,多行不连续),按列(单列,多列连续,多列不连续);部分不连续行不连续列;按位置(坐标),按字符(索引);按块(list);函数有 df.iloc(), df.loc(), df.iat(), df.at(), df.ix()。

2、转换为DF,赋值columns,index,修改添加数据,取行列索引

data = {'省份': ['北京', '上海', '广州', '深圳'],
        '年份': ['2017', '2018', '2019', '2020'],
        '总人数': ['2200', '1900', '2170', '1890'],
        '高考人数': ['6.3', '5.9', '6.0', '5.2']}
df = pd.DataFrame(data, columns=['省份', '年份', '总人数', '高考人数', '高数'],
                  index=['one', 'two', 'three', 'four'])
df['高数'] = ['90', '95', '92', '98']
print("行索引:{}".format(list(df.index)))
print("列索引:{}".format(list(df.columns)))
print(df.index[1:3])
print(df.columns[1])
print(df.columns[1:3])
print(df)

行索引:['one', 'two', 'three', 'four']
列索引:['省份', '年份', '总人数', '高考人数', '高数']
Index(['two', 'three'], dtype='object')
年份
Index(['年份', '总人数'], dtype='object')
       省份    年份   总人数 高考人数  高数
one    北京  2017  2200  6.3  90
two    上海  2018  1900  5.9  95
three  广州  2019  2170  6.0  92
four   深圳  2020  1890  5.2  98

3、iloc不能通过[:, [1:3]]取连续数据,取连续数据只能通过 df[df.columns[1:4]],先获取列索引,再取数据。

print(df['省份'])  #按列名取列
print(df.省份)  #按列名取列
print(df[['省份', '总人数']])  #按列名取不连续列数据
print(df[df.columns[1:4]])  #按列索引取连续列数据
print(df.iloc[:, 1])  #按位置取列
print(df.iloc[:, [1, 3]])  #按位置取不连续列数据

one      北京
two      上海
three    广州
four     深圳
Name: 省份, dtype: object
one      北京
two      上海
three    广州
four     深圳
Name: 省份, dtype: object
       省份   总人数
one    北京  2200
two    上海  1900
three  广州  2170
four   深圳  1890
         年份   总人数 高考人数
one    2017  2200  6.3
two    2018  1900  5.9
three  2019  2170  6.0
four   2020  1890  5.2
one      2017
two      2018
three    2019
four     2020
Name: 年份, dtype: object
         年份 高考人数
one    2017  6.3
two    2018  5.9
three  2019  6.0
four   2020  5.2

4、通过df.iloc[](数字)取行数据,取部分行部分列时,要先写行,再写列;有条件的取数据

print(df[1:3])  #按行取数据,这行代码结果没在下面输出
print(df[df.高数>90])  #按行有条件的取数据,结果没输出
print(df.iloc[1])  #按行取行数据
print(df.iloc[1, 3])  #按坐标取
print(df.iloc[[1], [3]])  #按坐标取
print(df.loc[df.index[1:3]])  #按行索引取行,但没必要
print(df.iloc[1:3])  #按行取连续数据
print(df.iloc[[1, 3]])  按行取不连续数据
print(df.iloc[[1,2,3], [2,4]])  取部分行部分列数据

省份        上海
年份      2018
总人数     1900
高考人数     5.9
高数        95
Name: two, dtype: object
5.9
    高考人数
two  5.9
       省份    年份   总人数 高考人数  高数
two    上海  2018  1900  5.9  95
three  广州  2019  2170  6.0  92
       省份    年份   总人数 高考人数  高数
two    上海  2018  1900  5.9  95
three  广州  2019  2170  6.0  92
      省份    年份   总人数 高考人数  高数
two   上海  2018  1900  5.9  95
four  深圳  2020  1890  5.2  98
        总人数  高数
two    1900  95
three  2170  92
four   1890  98

5、通过df.loc[]索引(字符)取行数据。

print(df.loc['two'])
print(df.loc['two', '省份'])
print(df.loc['two':'three'])
print(df.loc[['one', 'three']])
print(df.loc[['one', 'three'], ['省份', '年份']])

省份        上海
年份      2018
总人数     1900
高考人数     5.9
高数        95
Name: two, dtype: object
上海
       省份    年份   总人数 高考人数  高数
two    上海  2018  1900  5.9  95
three  广州  2019  2170  6.0  92
       省份    年份   总人数 高考人数  高数
one    北京  2017  2200  6.3  90
three  广州  2019  2170  6.0  92
       省份    年份
one    北京  2017
three  广州  2019

6、ix,iat,at取行列数据,此方法不常用,可以使用上面方法即可。

print(df.ix[1:3])
print(df.ix[:, [1, 3]])
print(df.iat[1,3])
print(df.at['two', '省份'])

省份    年份   总人数 高考人数  高数
two    上海  2018  1900  5.9  95
three  广州  2019  2170  6.0  92
         年份 高考人数
one    2017  6.3
two    2018  5.9
three  2019  6.0
four   2020  5.2
5.9
上海

到此这篇关于Pandas读取行列数据最全方法的文章就介绍到这了,更多相关Pandas读取行列 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas Dataframe行列读取的实例

    如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as pd from pandas import Series,DataFrame data = {'a':[1,2,3], 'c':[4,5,6], 'b':[7,8,9] } frame = DataFrame(data,index=['one','two','three']) print(frame) print(fra

  • pandas 转换成行列表进行读取与Nan处理的方法

    pandas中有时需要按行依次对.csv文件读取内容,那么如何进行呢? 我们来完整操作一遍,假设我们已经有了一个.csv文件. # 1.导入包 import pandas as pd # 2读入数据 readFile = pd.read_csv('输出路径',encoding='gb2312') for record in readFile.values: print(record) 至此就完成了整个过程 如果有Nan怎么处理呢? 我们可以在readFile后面加入以下内容: readFile

  • Pandas读取行列数据最全方法

    1.读取方法有按行(单行,多行连续,多行不连续),按列(单列,多列连续,多列不连续):部分不连续行不连续列:按位置(坐标),按字符(索引):按块(list):函数有 df.iloc(), df.loc(), df.iat(), df.at(), df.ix(). 2.转换为DF,赋值columns,index,修改添加数据,取行列索引 data = {'省份': ['北京', '上海', '广州', '深圳'], '年份': ['2017', '2018', '2019', '2020'], '

  • Pandas读取MySQL数据到DataFrame的方法

    方法一: #-*- coding:utf-8 -*- from sqlalchemy import create_engine class mysql_engine(): user='******' passwd='******' host='******' port = '******' db_name='******' engine = create_engine('mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user,passwd,ho

  • pandas抽取行列数据的几种方法

    取行和列的几种常用方式: data[ 列名 ]: 取单列或多列,不能用连续方式取,也不能用于取行. data.列名: 只用于取单列,不能用于行. data[ i:j ]: 用起始行下标(i)和终止行下标(j)取单行或者连续多行,不能用于列的选取. data.loc[行名,列名]: 用对象的.loc[]方法实现各种取数据方式. data.iloc[行下标,列下标]: 用对象的.iloc[]方法实现各种取数据方式. 首先生成一个DataFrame对象: import pandas as pd sco

  • Python如何利用pandas读取csv数据并绘图

    目录 如何利用pandas读取csv数据并绘图 绘制图像 展示结果 pandas画pearson相关系数热力图 pearson相关系数计算函数 如何利用pandas读取csv数据并绘图 导包,常用的numpy和pandas,绘图模块matplotlib, import matplotlib.pyplot as plt import pandas as pd import numpy as np fig = plt.figure() ax = fig.add_subplot(111) 读取csv文

  • python3 pandas 读取MySQL数据和插入的实例

    python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')

  • pandas 读取各种格式文件的方法

    pandas 读取各种格式文件: 前置工序: import pandas as pd csv 文件读取中文错误处理: utf-8 codec can't decode .... pd.read_csv('c:/mydata/jit.csv',encoding='gb18030') sql 读取: import pymysql conn=pymysql.connect(host='127.0.0.1', user='root', passwd='root', db=' employee') sql

  • 使用pandas读取表格数据并进行单行数据拼接的详细教程

    业务需求 一个几十万条数据的Excel表格,现在需要拼接其中某一列的全部数据为一个字符串,例如下面简短的几行表格数据: id code price num 11 22 33 44 22 33 44 55 33 44 55 66 44 55 66 77 55 66 77 88 66 77 88 99 现在需要将code的这一列用逗号,拼接为字符串,并且每个单元格数据都用单引号包含,需要拼接成字符串'22','33','44','55','66','77',这样的情况,我们需要怎么处理呢?当然方式有

  • 详解pandas删除缺失数据(pd.dropna()方法)

    1.创建带有缺失值的数据库: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three']) # 随机产生5行3列的数据 df.ix[1, :-1] = np.nan # 将指定数据定义为缺失 df.ix[1:-1, 2] = np.nan print('\ndf1') # 输出df1,

  • Python Pandas多种添加行列数据方法总结

    目录 前言 1. 增加列数据 2. 增加行数据 补充:pandas根据现有列新添加一列 总结 前言 发现自己学习python 的各种库老是容易忘记,所有想利用这个平台,记录和分享一下学习时候的知识点,以后也能及时的复习,最近学习pandas,那我们来看看pandas添加数据的一些方法 创建一个dataframe 1. 增加列数据 为dataframe增加一列新数据,需要确保增加列的长度与原数据保持一致 如果是增加一列相同数据可以直接输入 df['level'] = 1 插入的数据是需要通过源数据

  • Python读取Excel数据实现批量生成PPT

    目录 背景 需求 准备 PPT数据 PPT模板 实战 导入相关模块 读取电影数据 读取PPT模板插入数据 背景 大家好,我是J哥. 我们常常面临着大量的重复性工作,通过人工方式处理往往耗时耗力易出错.而Python在办公自动化方面具有天然优势,分分钟解决你的办公需求,提前下班不是梦. 需求 前几天我发表了一篇办公自动化文章Python读取Excel数据并批量生成合同,获得许多小伙伴的认可和喜欢.其中有一位粉丝提议,能否出一篇PPT自动化的教程,通过读取Excel数据批量生成幻灯片.于是,我以豆瓣

随机推荐