深入理解C语言中使用频率较高的指针与数组

目录
  • 定义
  • 指针与二维数组
  • 指针数组与数组指针
  • 数组指针的应用
  • 操作
  • 总结

定义

指针:C语言中某种数据类型的数据存储的内存地址,例如:指向各种整型的指针或者指向某个结构体的指针。

数组:若干个相同C语言数据类型的元素在连续内存中储存的一种形态。

数组在编译时就已经被确定下来,而指针直到运行时才能被真正的确定到底指向何方。所以数组的这些身份(内存)一旦确定下来就不能轻易的改变了,它们(内存)会伴随数组一生。

而指针则有很多的选择,在其一生他可以选择不同的生活方式,比如一个字符指针可以指向单个字符同时也可代表多个字符等。

指针和数组在C语言中使用频率是很高的,在极个别情况下,数组和指针是“通用的”,比如数组名表示这个数组第一个数据的指针。

如下代码:

#include <stdio.h>
char array[4] = {1, 2, 3, 4};
int main(void)
{
    char * p;
    int i = 0;
    p = array;
    for (; i < 4; i++)
    {
        printf("*array = %d\n", *p++);
    }
    return (0);
}

这里我们将数组名array作为数组第一个数据的指针赋值给p。但是不能写成*array++。准确来说数组名可以作为右值,不能作为左值(左值和右值的概念这里不再展开讲解)。

数组名的值其实是一个指针常量,这样我想你就明白了数组名为什么不能做为左值了。如果想用指针p访问array的下面2的数据,以下写法是合法的。

char data;
/*第一种写法*/
p = array;
data = p[2];
/*第二种写法*/
p = array;
data = *(p+2);
/*第三种写法*/
p = array +

指针与二维数组

先说一下二维数组,二维数组在概念上是二维的,有行和列,但在内存中所有的数组元素都是连续排列的,它们之间没有“缝隙”。以下面的二维数组 a 为例:

int a[3][4] = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} };

从概念上理解,a 的分布像一个矩阵:

  • 0 1 2 3。
  • 4 5 6 7。
  • 8 9 10 11。

但是内存是连续的,没有这样的“矩阵内存”,所以二维数组a分布是连续的一块内存。

C语言允许把一个二维数组分解成多个一维数组来处理。对于数组 a,它可以分解成三个一维数组,即 a[0]、a[1]、a[2]。每一个一维数组又包含了 4 个元素,例如 a[0] 包含 a[0][0]、a[0][1]、a[0][2]、a[0][3]。那么定义如下指针如何理解呢?

int (*p)[4];

括号中的*表明 p 是一个指针,它指向一个数组,数组的类型为int [4],这正是 a 所包含的每个一维数组的类型。那么和下面定义有什么区别呢?

int *p[4];

这里就要先说明*和[]的优先级了,[]的优先级是高于*的,所以int *p[4];等同于int *(p[4]);。所以它是一个指针数组。这里很绕,总接下:

int (*p)[4];是数组指针,它指向二维数组中每个一维数组的类型,它指向的是一个数组。

int *p[4];是指针数组,它是一个数组,数组中每个数是指向int型的指针。

指针数组与数组指针

对于指针数组,说的已经很明确了,不再详细讲解,下面说一下数组指针。举例看一下:

#include <stdio.h>
int main()
{
    int a[3][4] = {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}};
    int(*p)[4];
    p = a;
    printf("%d\n", sizeof(*(p + 1)));
    return (0);
}

对于数组指针p如下:

那么printf("%d\n", sizeof(*(p + 1)));的结果就是16。如果想打印a[1][0]的值,代码如下:

printf("%d\n", *(*(p + 1)));

如果想打印a[1][1]的值,代码如下:

printf("%d\n", *(*(p + 1)+1));

这个代价自行体会,p是数组指针,它指向的是一个数组,所以对获取它指向的值,也就是*p,是指向一个数组还是一个值,指向a[0]。获取获取a[0][0],就需要写成**p。

对指针进行加法(减法)运算时,它前进(后退)的步长与它指向的数据类型有关,p 指向的数据类型是int [4],那么p+1就前进 4×4 = 16 个字节,p-1就后退 16 个字节,这正好是数组 a 所包含的每个一维数组的长度。也就是说,p+1会使得指针指向二维数组的下一行,p-1会使得指针指向数组的上一行。

最后再次捋一下数组指针和指针数组。

int *p1[4];是指针数组。

int (*p2)[4];是数组指针。

“[]”的优先级比“*”要高。

对于指针数组,p1先和“[]”结合,构成一个数组的定义,数组名为p1,int *修饰的是数组的内容,即数组的每个元素。那么它本质是一个数组,这个数组里有4个指向int类型数据的指针。

对于数组指针,“()”的优先级比“[]”高,“*”号和p2 构成一个指针的定义,指针变量名为p2,int 修饰的是数组的内容,即数组的每个元素。数组在这里并没有名字,是个匿名数组。那么它本质是一个指针,它指向一个包含4个int 类型数据的数组。

既然深入谈了指针数组和数组指针,就多聊一下。

#include <stdio.h>
int main()
{
    char a[5] = {'A', 'B', 'C', 'D'};
    char(*p3)[5] = &a;
    char(*p4)[5] = a;
    return 0;
}

上面代码是编译编译是报了waring的,报警如下:

注意:不同的编译器编译结果可能不同,我的编译方法请参考《使用vscode编译C语言》。p3 这个定义的“=”号两边的数据类型完全一致,而p4 这个定义的“=”号两边的数据类型就不一致了。左边的类型是指向整个数组的指针,右边的数据类型是指向单个字符的指针。所以才有了上面的警告。

但由于&a 和a 的值一样,而变量作为右值时编译器只是取变量的值,所以运行并没有什么问题。不过编译器仍然警告你别这么用。

再举一个栗子:

int vector[10];
int matrix[3][10];
int *vp,*vm;
vp = vector;
vm = matrix;

上面的代码第5行是错误的,因为vm是指向整型的指针,但是matrix不是指向正向的指针,他是指向整型数组的指针。下面是正确的写法:

int matrix[3][10];
int (*vm)[10];
vm = matrix;

数组指针的应用

上面说了那么多,可能大部分开发者用不到,数组指针在很多时候都是可以代替二维数组的,有些程序员喜欢用指针数组来代替多维数组,一个常见的用法就是处理字符串。

#include <stdio.h>
char *Names[] =
    {
        "Bill",
        "Sam",
        "Jim",
        "Paul",
        "Charles",
        0};
void main()
{
    char **nm = Names;
    while (*nm != 0)
        printf("%s \n", *nm++);
}

具体运行我就不讲解了,运行结果如下:

注意数组中的最后一个元素被初始化为0,while循环以次来判断是否到了数组末尾。具有零值的指针常常被用做循环数组的终止符。

这种零值的指针称为为空指针(NULL)。采用空指针作为终止符,在增删元素时就不必改动遍历数组的代码,因为此时数组仍然以空指针作为结束。

操作

写到这里想到一个“操作”,先看下面代码是否正确。

p[-1]=0;

初看这句代码,觉得奇怪,甚至觉得它就是错误,日常C语言开发基本有见到小标是负数的,但是仔细想想没有哪一本书说过下标能为负数的。看下面代码:

void main()
{
    int data[4] = {0, 1, 2, 3};
    int *p;
    p = data +2;
    printf("p[-1] is %d\n",p[-1]);
    printf("*(p-1) is %d\n",*(p-1));
}

运行结果如下:

不仅可以编译通过,还能正确的输出结果为1。这表明,C的下标引用和间接访问表达式是一样的。当然不鼓励这种操作,代码需要很强的可读性,而不是这样的操作,这里只是演示下标引用和简介表达式的关系。

总结

到此这篇关于C语言中使用频率较高的指针与数组的文章就介绍到这了,更多相关C语言指针与数组内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言 指针数组详解及示例代码

    如果一个数组中的所有元素保存的都是指针,那么我们就称它为指针数组.指针数组的定义形式一般为: dataType *arrayName[length]; [ ]的优先级高于*,该定义形式应该理解为: dataType *(arrayName[length]); 括号里面说明arrayName是一个数组,包含了length个元素,括号外面说明每个元素的类型为dataType *. 除了每个元素的数据类型不同,指针数组和普通数组在其他方面都是一样的,下面是一个简单的例子: #include <stdi

  • 简单分析C语言中指针数组与数组指针的区别

    首先来分别看一下,指针数组的一个小例子: #include <stdio.h> #include <string.h> int lookup_keyword(const char*key, const char* table[], const int size) { int ret = -1; int i = 0; for(i=0; i<size; i++) { if (strcmp(key, table[i]) == 0) { ret = i; break; } } ret

  • 详解C语言中的函数、数组与指针

    1.函数:当程序很小的时候,我们可以使用一个main函数就能搞定,但当程序变大的时候,就超出了人的大脑承受范围,逻辑不清了,这时候就需要把一个大程序分成许多小的模块来组织,于是就出现了函数概念:   函数是C语言代码的基本组成部分,它是一个小的模块,整个程序由很多个功能独立的模块(函数)组成.这就是程序设计的基本分化方法: (1) 写一个函数的关键: 函数定义:函数的定义是这个函数的实现,函数定义中包含了函数体,函数体中的代码段决定了这个函数的功能: 函数声明:函数声明也称函数原型声明,函数的原

  • C语言 指针与二维数组详解

    二维数组在概念上是二维的,有行和列,但在内存中所有的数组元素都是连续排列的,它们之间没有"缝隙".以下面的二维数组 a 为例: int a[3][4] = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} }; 从概念上理解,a 的分布像一个矩阵: 0   1   2   3 4   5   6   7 8   9  10  11 但在内存中,a 的分布是一维线性的,整个数组占用一块连续的内存: C语言中的二维数组是按行排列的,也就是先存放 a[

  • C语言 数组指针详解及示例代码

    数组(Array)是一系列具有相同类型的数据的集合,每一份数据叫做一个数组元素(Element).数组中的所有元素在内存中是连续排列的,整个数组占用的是一块内存.以int arr[] = { 99, 15, 100, 888, 252 };为例,该数组在内存中的分布如下图所示: 定义数组时,要给出数组名和数组长度,数组名可以认为是一个指针,它指向数组的第 0 个元素.在C语言中,我们将第 0 个元素的地址称为数组的首地址.以上面的数组为例,下图是 arr 的指向: 下面的例子演示了如何以指针的方

  • C语言数组指针的小例子

    1.功能:输入6个学生的5门课程成绩,计算出每个学生的平均分和每门课程的平均分.2.C语言实现代码:(其实就是用二维数组来实现的,二维数组的引用传递使用数组指针来完成) 复制代码 代码如下: #include <stdio.h>#define STUDENT 5#define SCORE 6void input_array(float (*score)[STUDENT]);void avg_score(float (*score)[STUDENT]);void avg_course(float

  • 举例理解C语言二维数组的指针指向问题

    之前对数组的概念一直没有理解透彻,只觉得数组名就是个常量指针而已,用法和基本的指针差不多.所以当我尝试用二级指针去访问二维数组时,就经常会出错.下面就是刚开始写的一个错误的程序: #include <stdio.h> int main() { int iArray[2][3] = {{1,2,3},{4,5,6}}; int **pArray = NULL; pArray = iArray; printf("array[0][0] = %d\n", pArray[0][0]

  • 深入理解C语言中使用频率较高的指针与数组

    目录 定义 指针与二维数组 指针数组与数组指针 数组指针的应用 操作 总结 定义 指针:C语言中某种数据类型的数据存储的内存地址,例如:指向各种整型的指针或者指向某个结构体的指针. 数组:若干个相同C语言数据类型的元素在连续内存中储存的一种形态. 数组在编译时就已经被确定下来,而指针直到运行时才能被真正的确定到底指向何方.所以数组的这些身份(内存)一旦确定下来就不能轻易的改变了,它们(内存)会伴随数组一生. 而指针则有很多的选择,在其一生他可以选择不同的生活方式,比如一个字符指针可以指向单个字符

  • 深入理解 Go 语言中的 Context

    Hi,大家好,我是明哥. 在自己学习 Golang 的这段时间里,我写了详细的学习笔记放在我的个人微信公众号 <Go编程时光>,对于 Go 语言,我也算是个初学者,因此写的东西应该会比较适合刚接触的同学,如果你也是刚学习 Go 语言,不防关注一下,一起学习,一起成长. 我的在线博客:http://golang.iswbm.com 我的 Github:github.com/iswbm/GolangCodingTime 1. 什么是 Context? 在 Go 1.7 版本之前,context 还

  • 带你理解C语言中的汉诺塔公式

    目录 汉诺塔公式 汉诺塔问题在数学层面的公式: C语言递归公式 两层汉诺塔 三层汉诺塔 总结 汉诺塔公式 汉诺塔问题在数学层面的公式: 不用说,你看到这个公式一定一脸懵逼,我现在来讲解这个公式的作用. 先来回想一下大象放冰箱要几步,三步吧,打开冰箱,放进去,关上门就行了,我们先不要去思考一些细碎的步骤,将一个复杂的问题先简单化,再慢慢去分析. 那汉诺塔问题也是同样的简单三步:(假设有n个盘子) 一.把最大的盘子留在A柱,然后将其他的盘子全放在B柱. 二.把最大的盘子放到C柱. 三.然后将B柱上的

  • 深入理解Go语言中的闭包

    闭包 在函数编程中经常用到闭包,闭包是什?它是怎么产生的及用来解决什么问题呢?先给出闭包的字面定义:闭包是由函数及其相关引用环境组合而成的实体(即:闭包=函数+引用环境).这个从字面上很难理解,特别对于一直使用命令式语言进行编程的程序员们. Go语言中的闭包 先看一个demo: func f(i int) func() int { return func() int { i++ return i } } 函数f返回了一个函数,返回的这个函数就是一个闭包.这个函数中本身是没有定义变量i的,而是引用

  • 深度理解C语言中的关键字static

    目录 一.函数和变量的多文件问题 1.1.为什么全局变量和函数需要跨文件访问 二.static修饰变量和函数 2.1.static修饰全局变量 2.2.static修饰局部变量 2.3.为什么局部变量具有临时性,全局变量具有全局性 总结 一.函数和变量的多文件问题 .h: 头文件,一般包含函数声明,变量声明,宏定义,头文件等内容(header) .c : 源文件,一般包含函数实现,变量定义等 (.c:c语言) 如果在一个源文件定义一个函数,然后再另一个源文件调用,这样的方式可行吗? 答案是可行的

  • 深入理解Swift语言中的闭包机制

    在 Swift 中的闭包类似于结构块,并可以在任何地方调用,它就像 C 和 Objective C 语言内置的函数. 函数内部定义的常数和变量引用可被捕获并存储在闭包.函数被视为封闭的特殊情况,它有 3 种形式. 在 Swift 语言闭合表达式,如下优化,重量轻语法风格,其中包括: 推导参数并从上下文菜单返回值的类型 从单封表达的隐性返回 简略参数名称 尾部闭包语法 语法 下面是一个通用的语法定义用于闭包,它接受参数并返回数据的类型: 复制代码 代码如下: {(parameters) -> re

  • 直观理解C语言中指向一位数组与二维数组的指针

    一维数组和指针: 对于一位数组和指针是很好理解的: 一维数组名: 对于这样的一维数组:int a[5];  a作为数组名就是我们数组的首地址, a是一个地址常量 . 首先说说常量和变量的关系, 对于变量来说, 用箱子去比喻再好不过了, 声明一个变量就声明一个箱子,比如我们开辟出一个苹果类型的箱子, 给这个变量赋值就是把盛放苹果的箱子中放入一个实实在在的苹果, 这就是变量的赋值.  而对于数组来说, 就是一组类型相同的箱子中,一组苹果箱子, 可以放入不同的苹果. 一维数组空间: 变量被声明后, 我

  • 通过一个小例子来简单理解C语言中的内存空间管理

    对于一个C语言程序而言,内存空间主要由五个部分组成代码段(.text).数据段(.data).BSS段(.bss),堆和栈组成,其中代码段,数据段和BSS段是编译的时候由编译器分配的,而堆和 栈是程序运行的时候由系统分配的.布局如下 在上图中,由编译器分配的地址空间都是在连接的时候分配的,而运行时分配的空间是在程序运行时由系统分配的 BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量和静态变量 (这里注意一个问题:一般的书上都会说全局变量和静态变量是会自动初始化

  • 深入理解C语言中编译相关的常见错误

    1. /usr/lib/gcc/i686-linux-gnu/4.6/../../../i386-linux-gnu/crt1.o: In function `_start':(.text+0x18): undefined reference to `main'collect2: ld 返回 1Reason: no main function in source file2. to get compile options -I and -lpkg-config libe.g: pkg-confi

  • 深入理解Go语言中的数组和切片

    一.类型 数组是值类型,将一个数组赋值给另一个数组时,传递的是一份拷贝. 切片是引用类型,切片包装的数组称为该切片的底层数组. 我们来看一段代码 //a是一个数组,注意数组是一个固定长度的,初始化时候必须要指定长度,不指定长度的话就是切片了 a := [3]int{1, 2, 3} //b是数组,是a的一份拷贝 b := a //c是切片,是引用类型,底层数组是a c := a[:] for i := 0; i < len(a); i++ { a[i] = a[i] + 1 } //改变a的值后

随机推荐