Python opencv操作深入详解

直接读取图片

def display_img(file="p.jpeg"):
  img = cv.imread(file)
  print (img.shape)
  cv.imshow('image',img)
  cv.waitKey(0)
  cv.destroyAllWindows()

读取灰度图片

def display_gray_img(file="p.jpeg"):
  img = cv.imread(file,cv.IMREAD_GRAYSCALE)
  print (img.shape)
  cv.imshow('image',img)
  cv.waitKey(0)
  cv.destroyAllWindows()
  cv.imwrite("gray_img.png",img)

读取视频

def display_video(file="sj.mp4"):
  v = cv.VideoCapture(file)
  if v.isOpened():
    open,frame = v.read()
  else:
    open=False

  while open:
    ret,frame = v.read()
    if frame is None:
      break

    if ret == True:
      gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY)
      cv.imshow("result",gray)
      if cv.waitKey(10) & 0xFF == 27:
        break
  v.release()
  v.waitKey(0)
  v.destroyAllWindows()

截取图片

def get_frame_img(file="p.jpeg"):
  img = cv.imread(file)
  print (img.shape)
  cat = img[0:200,0:200]
  cv.imshow('get_frame_img',cat)
  cv.waitKey(0)
  cv.destroyAllWindows()

提取rgb通道

def extrats_rgb_img(file="p.jpeg"):
  img = cv.imread(file)
  b,g,r = cv.split(img)
  print (b.shape,g.shape,r.shape)
  new_img = cv.merge((b,g,r))
  print (new_img.shape)

  copy_img_r = img.copy()
  copy_img_r[:,:,0]=0
  copy_img_r[:,:,1]=0
  cv.imshow("r_img",copy_img_r)

  copy_img_g = img.copy()
  copy_img_g[:,:,0]=0
  copy_img_g[:,:,2]=0
  cv.imshow("g_img",copy_img_g)

  copy_img_b = img.copy()
  copy_img_b[:,:,1]=0
  copy_img_b[:,:,2]=0
  cv.imshow("b_img",copy_img_b)

边界填充

def border_fill_img(file="p.jpeg"):
  border_type = [
    cv.BORDER_REPLICATE,#复制法,复制边缘
    cv.BORDER_REFLECT, #反射法,对感兴趣的图像中的像素在两边进行复制
    cv.BORDER_REFLECT_101,#反射法,以边缘像素为轴,对称
    cv.BORDER_WRAP,#外包装法
    cv.BORDER_CONSTANT#常量法,常量填充
    ]
  border_title = [
    "REPLICATE",
    "REFLECT",
    "REFLECT_101",
    "WRAP",
    "CONSTANT"
    ]
  img = cv.imread(file)
  top_size,bottom_size,left_size,right_size = (50,50,50,50)
  plt.subplot(231)
  plt.imshow(img,"gray")#原始图像
  plt.title("ORIGNAL")

  for i in range(len(border_type)):
    result = cv.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,border_type[i])
    plt.subplot(232+i)
    plt.imshow(result,"gray")
    plt.title(border_title[i])

  plt.show()

图像融合,变换

def img_compose(file1="tu.jpeg",file2="gui.jpeg"):
  img_1 = cv.imread(file1)
  img_2 = cv.imread(file2)
  print (img_1.shape)
  print (img_2.shape)
  img_1= cv.resize(img_1,(500,500))
  img_2= cv.resize(img_2,(500,500))
  print (img_1.shape)
  print (img_2.shape)
  res = cv.addWeighted(img_1,0.4,img_2,0.6,0)
  plt.imshow(res)
  plt.show()

  res = cv.resize(img_1,(0,0),fx=3,fy=1)
  plt.imshow(res)
  plt.show()

  res = cv.resize(img_2,(0,0),fx=1,fy=3)
  plt.imshow(res)
  plt.show()

二值化处理

def Binarization(filepath):
  img = cv2.imread(filepath,0)
  limit = 120
  ret,thresh=cv2.threshold(img,limit,255,cv2.THRESH_BINARY_INV)
  plt.imshow(thresh,'gray')
  plt.show()
  return thresh
Binarization('t1.jpg')

到此这篇关于Python opencv操作深入详解的文章就介绍到这了,更多相关Python opencv操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv实现图像配准与比较

    本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下 代码 from skimage import io import cv2 as cv import numpy as np import matplotlib.pyplot as plt img_path1 = '2_HE_maxarea.png' img_path2 = '2_IHC_maxarea.png' img1 = io.imread(img_path1) img2 = io.imre

  • python+opencv3.4.0 实现HOG+SVM行人检测的示例代码

    参照opencv官网例程写了一个基于python的行人检测程序,实现了和自带检测器基本一致的检测效果. 网址 :https://docs.opencv.org/3.4.0/d5/d77/train_HOG_8cpp-example.html opencv版本:3.4.0 训练集和opencv官方用了同一个,可以从http://pascal.inrialpes.fr/data/human/下载,在网页的最下方"here(970MB处)",用迅雷下载比较快(500kB/s).训练集文件比较

  • python 基于opencv去除图片阴影

    一.前言 如果你自己打印过东西,应该有过这种经历.如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片.比如下面这两张图片: 因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果). 那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法. 二.如何去除阴影? 首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像). 然后我们分析一下,在上面的图片中有三个主色调,分别是

  • Python OpenCV 图像区域轮廓标记(框选各种小纸条)

    学在前面 上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习.完不成,就实现其它学习项目. 轮廓识别实战 先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记. 图片基本处理 import cv2 as cv src = cv.imread("./demo.jpg") gray = cv.cvtColor(src,

  • Python opencv操作深入详解

    直接读取图片 def display_img(file="p.jpeg"): img = cv.imread(file) print (img.shape) cv.imshow('image',img) cv.waitKey(0) cv.destroyAllWindows() 读取灰度图片 def display_gray_img(file="p.jpeg"): img = cv.imread(file,cv.IMREAD_GRAYSCALE) print (img

  • Python OpenCV阈值处理详解

    目录 前言 阈值技术简介 简单的阈值技术 阈值类型 简单阈值技术的实际应用 前言 图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象.因此,图像分割是图像识别和内容分析的重要步骤.图像阈值是一种简单.有效的图像分割方法,其中像素根据其强度值进行分区.在本文中,将介绍 OpenCV 所提供的主要阈值技术,可以将这些技术用作计算机视觉应用程序中图像分割的关键部分. 阈值技术简介 阈值处理是一种简单.有效的将图像划分为前景和背景的方法.图像分

  • Python 文件操作的详解及实例

    Python 文件操作的详解及实例 一.文件操作 1.对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 现有文件如下: 昨夜寒蛩不住鸣. 惊回千里梦,已三更. 起来独自绕阶行. 人悄悄,帘外月胧明. 白首为功名,旧山松竹老,阻归程. 欲将心事付瑶琴. 知音少,弦断有谁听. f = open('小重山') #打开文件 data=f.read()#获取文件内容 f.close() #关闭文件 注意:if in the win,hello文件是utf8保存的,打

  • Python OpenCV直方图均衡化详解

    目录 前言 灰度直方图均衡化 颜色直方图均衡化 前言 图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务.在本文中,将介绍如何使用 OpenCV 函数 cv2.equalizeHist() 执行直方图均衡,并将其应用于灰度和彩色图像,cv2.equalizeHist() 函数将亮度归一化并提高图像的对比度. 灰度直方图均衡化 使用 cv2.equalizeHist() 函数来均衡给定灰度图像的对比度: # 加载图像并转换为灰度图像 imag

  • Python异常处理操作实例详解

    本文实例讲述了Python异常处理操作.分享给大家供大家参考,具体如下: 一.异常处理的引入 >>>whileTrue: try: x = int(input("Please enter a number: ")) break exceptValueError: print("Oops! That was no valid number. Try again ") Please enter a number: y Oops!That was no

  • python字典操作实例详解

    本文实例为大家分享了python字典操作实例的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import turtle ##全局变量## #词频排列显示个数 count = 10 #单词频率数组-作为y轴数据 data = [] #单词数组-作为x轴数据 words = [] #y轴显示放大倍数-可以根据词频数量进行调节 yScale = 6 #x轴显示放大倍数-可以根据count数量进行调节 xScale =

  • Python切片操作深入详解

    本文实例讲述了Python切片操作.分享给大家供大家参考,具体如下: 我们基本上都知道Python的序列对象都是可以用索引号来引用的元素的,索引号可以是正数由0开始从左向右,也可以是负数由-1开始从右向左. 在Python中对于具有序列结构的数据来说都可以使用切片操作,需注意的是序列对象某个索引位置返回的是一个元素,而切片操作返回是和被切片对象相同类型对象的副本. 如下面的例子,虽然都是一个元素,但是对象类型是完全不同的: >>> alist = [0, 1, 2, 3, 4, 5, 6

  • Python 操作MySQL详解及实例

    Python 操作MySQL详解及实例 使用Python进行MySQL的库主要有三个,Python-MySQL(更熟悉的名字可能是MySQLdb),PyMySQL和SQLAlchemy. Python-MySQL资格最老,核心由C语言打造,接口精炼,性能最棒,缺点是环境依赖较多,安装复杂,近两年已停止更新,只支持Python2,不支持Python3. PyMySQL为替代Python-MySQL而生,纯python打造,接口与Python-MySQL兼容,安装方便,支持Python3. SQLA

  • Python操作MongoDB详解及实例

    Python操作MongoDB详解及实例 由于需要在页面展示MongoDB库里的数据,所以考虑使用python操作MongoDB,PyMongo模块是Python对MongoDB操作的接口包,所以首页安装pymongo. 1.安装命令 pip install pymongo 2.查询命令: import pymongo # 创建连接 client = pymongo.MongoClient(host="10.0.2.38", port=27017) # 连接probeb库 db = c

  • Python csv文件的读写操作实例详解

    这篇文章主要介绍了Python csv文件的读写操作实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python内置了csv模块,用它可以方便的操作csv文件. 1.写文件 (1)写文件的方法一 import csv # open 打开文件有多种模式,下面是常见的4种 # r:读数据,默认模式 # w:写数据,如果已有数据则会先清空 # a:向文件末尾追加数据 # x : 写数据,如果文件已存在则失败 # 第2至4种模式如果第一个参数指

随机推荐