用python拟合等角螺线的实现示例

人类很早就注意到飞蛾扑火这一奇怪的现象,并且自作主张地赋予了飞蛾扑火很多含义,引申出为了理想和追求义无反顾、不畏牺牲的精神。但是,这种引申和比喻,征求过飞蛾的意见吗?

后来,生物学家又提出来昆虫趋光性这一假说来解释飞蛾扑火。不过,这个假说似乎也不成立。如果昆虫真的追逐光明,估计地球上早就没有昆虫了——它们应该齐刷刷整体移民到太阳或月亮上去了。

仔细观察飞蛾扑火,就会发现,昆虫们并不是笔直地飞向光源,而是绕着光源飞行,同时越来越接近光源,最终酿成了“惨案”。这一行为被解释成“失误”似乎更合理一点。既然火烛危险,那么飞蛾为什么要绕着火烛飞行呢?

最新的解释是,飞蛾在夜晚飞行时是依据月光和星光作为参照物进行导航的。星星和月亮离我们非常远,光到了地面上可以看成平行光,当飞蛾的飞行路径保持与光线方向成恒定夹角时,飞蛾就变成了直线飞行,如下图所示。

然而,当飞蛾遇到了火烛等危险光源时,还是按照以前的飞行方式,路径保持与光线方向成恒定夹角,以为依旧能飞成一条直线,结果悲剧了。此时它的飞行轨迹并不是一条直线,而是一条等角螺旋线,如下图所示。

可怜的飞蛾!亿万年进化出来的精准导航,在人工光源的干扰下竟如此不堪。

螺线及等角螺线

螺线家族很庞大,比如,阿基米德螺线、费马螺线、等角螺线、双曲螺线、连锁螺线、斐波那契螺线、欧拉螺线等等。等角螺线,又叫对数螺线,螺线家族的一员。

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线(等角螺旋线),并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点就是它的形状,无论你把它放大或缩小它都不会有任何的改变。就像我们不能把角放大或缩小一样。

用极坐标分析法分析飞蛾扑火的飞行轨迹,可知,轨迹线上任意一点的切线与该点与原点的连线之间的夹角是固定的,这就是等角螺线得名的由来。因为分析过程使用了对数,所以等角螺线又叫对数螺线。我不太会用LaTeX写数学公式,所以就用 python 的方法写出螺线方程。其中,fixed 表示螺线固定角,大于 pi/2 则为顺时针螺线,小于 pi/2 则为逆时针螺线。theta 表示旋转弧度,r 表示距离中心点距离。

r = fixed*np.exp(theta/np.tan(fixed))

等角螺线在生活中也经常见到,比如,鹦鹉螺的花纹、玫瑰花瓣的排列,星系的悬臂,低气压云图等。

绘制等角螺线

给定中心点和固定角,一个等角螺线就被唯一地确定了。这个螺线可以绕很多圈,可以填满整个宇宙。但很多时候,我们往往只需要观察螺线上的一小部分,这时候就需要两个参数来约定:一个叫作 circle,表示你希望看到多少圈螺线,一个叫作 phase,表示螺线的可见部分向内(顺时针)或向外(逆时针螺线)旋转多少圈。

这是使用 matplotlib 绘制等角螺线的函数,其中固定角参数 fixed 做了一点处理:以度(°)为单位,以零为中心,大于零则为顺时针螺线,小于零则为逆时针螺线

import numpy as np
import matplotlib.pyplot as plt

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong']
mpl.rcParams['axes.unicode_minus'] = False

def plotSpiral(core, fixed, phase=0, circle=4):
  """绘制等角螺线
  core		- 等角螺线的中心坐标,tuple类型
  fixed    - 等角螺线的固定角度,单位:度(°)。fixed大于零则为顺时针螺线,小于零则为逆时针螺线
  phase    - 初始相位,单位:圈(360°)。对顺时针螺线,该数值越大,螺线越大,对逆时针螺线则相反
  circle   - 螺线可见部分的圈数,单位:圈(360°)
  """

  plt.axis("equal")
  plt.plot([core[0]], [core[1]], c='red', marker='+', markersize=10)

  fixed_rad = np.radians(90 + fixed)
  theta = np.linspace(0, circle*2*np.pi, 361) + phase*2*np.pi
  r = fixed_rad*np.exp(theta/np.tan(fixed_rad))
  x = r*np.cos(theta) + core[0]
  y = r*np.sin(theta) - core[1]
  plt.plot(x, y, c='blue')

  plt.show()

下图展示了逆时针等角螺线各个参数的意义:

下图展示了顺时针等角螺线各个参数的意义:

拟合等角螺线

在台风定位时,需要手动确定台风中心位置,并标识出台风螺线轨迹上的部分点,然后逆合出螺线方程。如下图所示,蓝色十字为台风中心点,5个黄色圆点是手工标注的台风螺线轨迹上的点。

以下为拟合函数

import numpy as np
from scipy import optimize

def fit_spiral(core, dots):
  """拟合等角螺线,返回定角fixed,初始相位phase"""

  fixed_ccw = 0.445*np.pi
  fixed_cw = 0.555*np.pi

  # 将dots拆分成x_list和y_list
  x_list, y_list = list(), list()
  for x, y in dots:
    x_list.append(x-core[0])
    y_list.append(y-core[1])

  # 计算距离
  x = np.array(x_list)
  y = np.array(y_list)
  r = np.hypot(x,y)

  # 按照距离排序
  sort_mask = np.argsort(r)
  x = x[sort_mask]
  y = y[sort_mask]
  r = r[sort_mask]

  # 计算角度
  theta = np.arctan(y/x)
  theta[x<0] += np.pi

  # 确定顺序(CW-顺时针,CCW-逆时针)
  d = np.diff(theta)
  print(d)
  ccw = d[d>0].size > d[d<0].size
  print('ccw=',ccw)

  # 调整角度为升序(CCW)或降序(CW)
  if ccw:
    for i in range(1, theta.size):
      while theta[i] < theta[i-1]:
        theta[i] += 2*np.pi

      dtheta = theta[i] - theta[i-1]
      while r[i]/r[i-1] > 1.8*np.exp(dtheta/np.tan(fixed_ccw)):
        theta[i] += 2*np.pi
        dtheta = theta[i] - theta[i-1]
  else:
    for i in range(theta.size-1)[::-1]:
      while theta[i] < theta[i+1]:
        theta[i] += 2*np.pi

      dtheta = theta[i+1] - theta[i]
      while r[i+1]/r[i] > 1.8*np.exp(dtheta/np.tan(fixed_cw)):
        theta[i] += 2*np.pi
        dtheta = theta[i+1] - theta[i]

  # 定义拟合函数
  def fmax(theta, fixed, phase):
    fixed = np.radians(90 + fixed)
    return fixed*np.exp((theta+phase*2*np.pi)/np.tan(fixed))

  try:
    fita, fitb = optimize.curve_fit(fmax, theta, r, [2-int(ccw), 0], maxfev=10000)
    return fita
  except:
    return None

core = (530, 496)
dots = [(467,538), (448,675), (522,484), (513,451), (811,519)]
result = fit_spiral(core, dots)
if isinstance(result, np.ndarray):
  plotSpiral(core, result[0], phase=result[1], circle=4)
else:
  print(u'拟合失败')

拟合效果如下图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python如何实现数据的线性拟合

    实验室老师让给数据画一张线性拟合图.不会matlab,就琢磨着用python.参照了网上的一些文章,查看了帮助文档,成功的写了出来 这里用到了三个库 import numpy as np import matplotlib.pyplot as plt from scipy import optimize def f_1(x, A, B): return A * x + B plt.figure() # 拟合点 x0 = [75, 70, 65, 60, 55,50,45,40,35,30] y0

  • python实现三维拟合的方法

    如下所示: from matplotlib import pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) #列出实验数据 point=[[2,3,48],[4,5,50],[5,7,51],[8,9,55],[9,12,56]] plt.xlabel("X1") plt.ylabel("X2") #

  • Python实现二维曲线拟合的方法

    如下所示: from numpy import * import numpy as np import matplotlib.pyplot as plt plt.close() fig=plt.figure() plt.grid(True) plt.axis([0,10,0,8]) #列出数据 point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]] plt.xlabel("X") plt.ylabel("Y") #用于求出

  • python之拟合的实现

    一.多项式拟合 多项式拟合的话,用的的是numpy这个库的polyfit这个函数.那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归.直接看代码吧 import numpy as np def linear_regression(x,y): #y=bx+a,线性回归 num=len(x) b=(np.sum(x*y)-num*np.mean(x)*np.mean(y))/(np.sum(x*x)-num*np.mean(x)**2) a=np.mean(y)-b*np.mean(x)

  • Python线性拟合实现函数与用法示例

    本文实例讲述了Python线性拟合实现函数与用法.分享给大家供大家参考,具体如下: 1. 参考别人写的: #-*- coding:utf-8 -*- import math import matplotlib.pyplot as plt def linefit(x , y): N = float(len(x)) sx,sy,sxx,syy,sxy=0,0,0,0,0 for i in range(0,int(N)): sx += x[i] sy += y[i] sxx += x[i]*x[i]

  • python实现最小二乘法线性拟合

    本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较. 问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值. 最小二乘法基本思想是使得样本方差最小. 代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数. import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Li

  • 对python指数、幂数拟合curve_fit详解

    1.一次二次多项式拟合 一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree). 2.指数幂数拟合curve_fit 使用scipy.optimize 中的curve_fit,幂数拟合例子如下: from scipy.optimize import curve_fit import matplotlib.pyplot as plt import numpy as np def func(x, a, b, c): return a * np.exp(-b *

  • 详解用Python为直方图绘制拟合曲线的两种方法

    直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状.中心位置以及数据的离散程度等. 在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法. 方法一:采用matplotlib中的mlab模块 mlab模块是Python中强大的3D作图工具,立体感效果极佳.在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线.在这里,

  • Python 做曲线拟合和求积分的方法

    这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目. 主要的就是首先要安装Anaconda  python库,然后来运用这些数学工具. ###最小二乘法试验### import numpy as np import pymysql from scipy.optimize import leastsq from scipy import integrate ###绘图,看拟合效

  • Python基于最小二乘法实现曲线拟合示例

    本文实例讲述了Python基于最小二乘法实现曲线拟合.分享给大家供大家参考,具体如下: 这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数. 考虑如下的含有4个参数的函数式: 构造数据 import numpy as np from scipy import optimize import matplotlib.pyplot as plt def logistic4(x, A, B, C, D): return (A-D)/(1+(x/C)**B)+D def residuals(p

  • python中matplotlib实现最小二乘法拟合的过程详解

    前言 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

  • Python数据拟合与广义线性回归算法学习

    机器学习中的预测问题通常分为2类:回归与分类. 简单的说回归就是预测数值,而分类是给数据打上标签归类. 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析. 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1.2.100次方的多项式对该数据进行拟合. 拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测. 代码如下: import matplotlib.pyplot as plt import

随机推荐