PyTorch中反卷积的用法详解

pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True)
class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True)

我不禁有疑问:

问题1: 两个函数的参数为什么几乎一致呢?

问题2: 反卷积层中的 output_padding是什么意思呢?

问题3: 反卷积层如何计算input和output的形状关系呢?

看了中文文档后,我得不出答案,看了英文文档,才弄明白了。花费了一个下午的时间去研究这个问题,值得用此文纪录一下。

我们知道,在卷积层中,输入输出的形状关系为:

o = [ (i + 2p - k)/s ] +1 (1)

其中:

O : 为 output size

i: 为 input size

p: 为 padding size

k: 为kernel size

s: 为 stride size

[] 为下取整运算

(1) 当 S=1 时

若 s等于1,则公式(1)中的取整符号消失,o 与 i 为 一一对应 的关系。 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride= 1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o, 则它们为 交叉对应 的关系,即:

i = o'
o = i'

为回答问题3, 我们将上述关系代入公式中,即:

i' = o' + 2p - k +1

已知 i', 即可推出 o':

o' = i' - 2p + k - 1 (2)

摘两个例子:

(2) 当 S>1 时

若 S>1 , 则公式(1)中的取整符号不能消去,o 与 i 为 多对1 的关系。 效仿 S=1时的情形, 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride>1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o,

i' = [ (o' + 2p - k)/s ] +1

已知 i', 我们可以得出 s 个 o' 解:

o'(0) = ( i' - 1) x s + k - 2p
o'(1) = o'(1) + 1
o'(2) = o'(1) + 2
...
o'(s-1) = o'(1) + s-1

即:

o'(n) =o'(1) + n = ( i' - 1) x s + k - 2p + n,
n = {0, 1, 2...s-1}

为了确定唯一的 o' 解, 我们用反卷积层函数中的ouput padding参数指定公式中的 n 值。这样,我们就回答了问题(2)。

摘一个简单的例子:

(3) 实验验证

给出一小段测试代码,改变各个参数值,运行比较来验证上面得出的结论,have fun~.

from torch import nn
from torch.nn import init
from torch.autograd import Variable

dconv = nn.ConvTranspose2d(in_channels=1, out_channels= 1, kernel_size=2, stride=2, padding=1,output_padding=0, bias= False)
init.constant(dconv.weight, 1)
print(dconv.weight)

input = Variable(torch.ones(1, 1, 2, 2))
print(input)
print(dconv(input))

以上这篇PyTorch中反卷积的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • Pytorch实现各种2d卷积示例

    普通卷积 使用nn.Conv2d(),一般还会接上BN和ReLu 参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑) class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( n

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • Pytorch卷积层手动初始化权值的实例

    由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧. 所以mark下. import torch import torch.nn as nn import torch.optim as optim import numpy as np # 第一一个卷积层,我们可以看到它的权值是随机初始化的 w=torch.nn.Conv2d(2,2,3,padding

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • Pytorch中膨胀卷积的用法详解

    卷积和膨胀卷积 在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以翻看相关书籍很好的理解. 最近在做项目过程中,碰到Pytorch中使用膨胀卷积的情况,想要的输入输出是图像经过四层膨胀卷积后图像的宽高尺寸不发生变化. 开始我的思路是padding='SAME'结合strides=1来实现输入输出尺寸不变,试列好多次还是有问题,报了张量错误的提示,想了好久也没找到解决方法,上网搜了下,有些人的博客说经过膨胀卷积之后图像的尺寸不发生变化,有

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • pytorch1.0中torch.nn.Conv2d用法详解

    Conv2d的简单使用 torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样. 在 torch 中,Conv2d 有几个基本的参数,分别是 in_channels 输入图像的深度 out_channels 输出图像的深度 kernel_size 卷积核大小,正方形卷积只为单个数字 stride 卷积步长,默认为1 padding 卷积是否造成尺寸丢失,1为不丢失 与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输

  • 正则表达式中问号(?)的正确用法详解

    目录 1.直接跟随在子表达式后面 2.非贪婪匹配 3.非获取匹配 4.断言 参考资料: 正则表达式中“?”的用法大概有以下几种 1.直接跟随在子表达式后面 这种方式是最常用的用法,具体表示匹配前面的一次或者0次,类似于{0,1},如:abc(d)?可匹配abc和abcd 2.非贪婪匹配 关于贪婪和非贪婪,贪婪匹配的意思是,在同一个匹配项中,尽量匹配更多所搜索的字符,非贪婪则相反.正则匹配的默认模式是贪婪模式,当?号跟在如下限制符后面时,使用非贪婪模式(*,+,?,{n},{n,},{n,m})

  • Oracle中游标Cursor基本用法详解

    查询 SELECT语句用于从数据库中查询数据,当在PL/SQL中使用SELECT语句时,要与INTO子句一起使用,查询的 返回值被赋予INTO子句中的变量,变量的声明是在DELCARE中.SELECT INTO语法如下: SELECT [DISTICT|ALL]{*|column[,column,...]} INTO (variable[,variable,...] |record) FROM {table|(sub-query)}[alias] WHERE............ PL/SQL

  • JSP中EL表达式的用法详解(必看篇)

    EL 全名为Expression Language EL 语法很简单,它最大的特点就是使用上很方便.接下来介绍EL主要的语法结构: ${sessionScope.user.sex} 所有EL都是以${为起始.以}为结尾的.上述EL范例的意思是:从Session的范围中,取得 用户的性别.假若依照之前JSP Scriptlet的写法如下: User user =(User)session.getAttribute("user"); String sex =user.getSex( );

  • oracle数据库中sql%notfound的用法详解

    SQL%NOTFOUND 是一个布尔值.与最近的sql语句(update,insert,delete,select)发生交互,当最近的一条sql语句没有涉及任何行的时候,则返回true.否则返回false.这样的语句在实际应用中,是非常有用的.例如要update一行数据时,如果没有找到,就可以作相应操作.如: begin update table_name set salary = 10000 where emp_id = 10; if sql%notfound then insert into

  • JavaScript中的splice方法用法详解

    JavaScript中的splice主要用来对js中的数组进行操作,包括删除,添加,替换等. 注意:这种方法会改变原始数组!. 1.删除-用于删除元素,两个参数,第一个参数(要删除第一项的位置),第二个参数(要删除的项数) 2.插入-向数组指定位置插入任意项元素.三个参数,第一个参数(插入位置),第二个参数(0),第三个参数(插入的项) 3.替换-向数组指定位置插入任意项元素,同时删除任意数量的项,三个参数.第一个参数(起始位置),第二个参数(删除的项数),第三个参数(插入任意数量的项) 示例:

随机推荐