使用pandas的box_plot去除异常值

我就废话不多说了,直接上代码吧!

#-*- coding:utf-8 _*-
"""
@author:Administrator
@file: standard_process.py
@time: 2018/8/9
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
import os
import seaborn as sns
from sklearn.preprocessing import StandardScaler
'''
通过box_plot(盒图来确认)异常值
'''

# 获取项目根目录
input_data_path = os.path.dirname(os.path.dirname(os.getcwd())) + '/input/'
print(input_data_path)

# 获取数据得位置
month_6_train_path = input_data_path +'month_6_1.csv'
month_6_test_path = input_data_path + 'test_data_6_1.csv'

# 读取数据
data_train = pd.read_csv(month_6_train_path)
data_test = pd.read_csv(month_6_test_path)

# print(data_train.head())
# print(data_test.head())

# 暂时不考虑省份城市地址
# 月份只有一个月,暂时不考虑
# bedrooms 需要看成分类型得数据
# 只取出longitude,latitude,price,buildingTypeId,bedrooms,daysOnMarket

# 取出这些数据;
# train = data_train[['longitude', 'latitude', 'price', 'buildingTypeId', 'bedrooms', 'daysOnMarket']]
# train= train.dropna()
train = data_test[['longitude', 'latitude', 'price', 'buildingTypeId', 'bedrooms', 'daysOnMarket']]
print(train.head())
# print(test.head())
# print(train.isna().sum())
# sns.pairplot(train)
# # sns.pairplot(test)
# plt.show()

# 特征清洗:异常值清理用用箱图;
# 分为两步走,一步是单列异常值处理,
# 第二步是多列分组异常值处理
def remove_filers_with_boxplot(data):
 p = data.boxplot(return_type='dict')
 for index,value in enumerate(data.columns):
  # 获取异常值
  fliers_value_list = p['fliers'][index].get_ydata()
  # 删除异常值
  for flier in fliers_value_list:
   data = data[data.loc[:,value] != flier]
 return data

print(train.shape)
train = remove_filers_with_boxplot(train)
print(train.shape)

'''
以上得异常值处理还不够完善,
完善的异常值处理是分组判断异常值,
也就是他在单独这一列种,还有一种情况是多余不同的分类,他是不是存在异常
所以就需要用到分组获取数据再箱图处理掉异常数据;
'''
train = train[pd.isna(train.buildingTypeId) != True]
print(train.shape)

print(train['bedrooms'].value_counts())
'''
3.0 8760
2.0 5791
4.0 5442
1.0 2056
5.0 1828
6.0  429
0.0  159
7.0  82
由于样本存在不均衡得问题:所以只采用12345数据:也就是说去掉0,7,6,到时候测试数据也要做相同得操作;
还有一种是通过下采样或者是上采样的方式进行,这里暂时不考虑;
'''
# 只取bedrooms 为1,2,3,4,5 得数据
train = train[train['bedrooms'].isin([1,2,3,4,5])]
print(train.shape)

# 利用pivot分组后去掉异常点
def use_pivot_box_to_remove_fliers(data,pivot_columns_list,pivot_value_list):
 for column in pivot_columns_list:
  for value in pivot_value_list:
   # 获取分组的dataframe
   new_data = data.pivot(columns=column,values=value)
   p = new_data.boxplot(return_type='dict')
   for index,value_new in enumerate(new_data.columns):
    # 获取异常值
    fliers_value_list = p['fliers'][index].get_ydata()
    # 删除异常值
    for flier in fliers_value_list:
     data = data[data.loc[:, value] != flier]
 return data

# train = use_pivot_box_to_remove_fliers(train,['buildingTypeId','bedrooms'],['price','daysOnMarket','longitude','latitude'])
print(train.shape)
# print(train.isna().sum())

# 以上就不考虑longitude和latitude的问题了;应为房屋的类型以及房间个数和经纬度关系不大,但是也不一定,
# 实践了一下加上longitude和latitude之后样本数据并没有减少;

# sns.pairplot(train)
# plt.show()

# 先进一步做处理将纬度小于40的去掉
train = train[train.latitude>40]

# --------------------------------》》》
# 对于数值类型得用均值填充,但是在填充之前注意一些原本就是分类型数据得列
# def fill_na(data):
#  for column in data.columns:
#   if column.dtype != str:
#    data[column].fillna(data[column].mean())
#  return data

# 以上是异常值,或者是离群点的处理,以及均值填充数据
# 下面将根据catter图或者是hist图来处理数据

# # 标准化数据
# train = StandardScaler().fit_transform(train)
# # 标准化之后画图发现数据分布并没有变
#
# sns.pairplot(pd.DataFrame(train))
# plt.show()

'''
1:循环遍历整个散点图用刚才写好的算法去除点;
'''

# 获取
# def get_outlier(x,y,init_point_count ,distance,least_point_count):
#  x_outliers_list = []
#  y_outliers_list = []
#  for i in range(len(x)):
#   for j in range(len(x)):
#    d =np.sqrt(np.square(x[i]-x[j])+np.square(y[i]-y[j]))
#    # print('距离',d)
#    if d <= distance:
#     init_point_count +=1
#   if init_point_count <least_point_count+1:
#    x_outliers_list.append(x[i])
#    y_outliers_list.append(y[i])
#    print(x[i],y[i])
#   init_point_count =0
#  return x_outliers_list,y_outliers_list
#
# def circulation_to_remove_outliers(data,list_columns=['longitude','latitude','price','daysOnMarket',]):
#  for column_row in list_columns:
#   for column_col in list_columns:
#    if column_row != column_col:
#     x = list(data[column_row])
#     y = list(data[column_col])
#     x_outliers_list ,y_outliers_list = get_outlier(x,y,0,0.01,2)
#     for x_outlier in x_outliers_list:
#      data = data[data.loc[:, column_row] != x_outlier]
#     for y_outlier in y_outliers_list:
#      data = data[data.loc[:, column_col] != y_outlier]
#  return data
#
# train = circulation_to_remove_outliers(train)
#
# print(train.shape)

# def get_outlier(x,y,init_point_count ,distance,least_point_count):
#  for i in range(len(x)):
#   for j in range(len(x)):
#    d =np.sqrt(np.square(x[i]-x[j])+np.square(y[i]-y[j]))
#    # print('距离',d)
#    if d <= distance:
#     init_point_count +=1
#   if init_point_count <least_point_count+1:
#    print(x[i],y[i])
#   init_point_count =0
#
# get_outlier(train['longitude'],train['latitude'],0,0.3,1)

# sns.pairplot(train)
# plt.show()
# train = train.dropna()
# print(train.tail())
# train.to_csv('./finnl_processing_train_data_6_no_remove_outliers_test.csv',index=False)
(0)

相关推荐

  • Pandas+Matplotlib 箱式图异常值分析示例

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as plt catering_sale = '../data/catering_sale.xls' data = pd.read_excel(catering_sale, index_col=u'日期') #指定日期列为索引,data类型为DataFrame plt.rcParams['font.sans-serif'] =

  • python实现数据清洗(缺失值与异常值处理)

    1. 将本地sql文件写入mysql数据库 本文写入的是python数据库的taob表 source [本地文件] 其中总数据为9616行,列分别为title,link,price,comment 2.使用python链接并读取数据 查看数据概括 #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplotlib.pylab as plt import mysql.connector

  • Python实现非正太分布的异常值检测方式

    工作中,我们经常会遇到数据异常,比如说浏览量突增猛降,交易量突增猛降,但是这些数据又不是符合正太分布的,如果用几倍西格玛就不合适,那么我们如何来判断这些变化是否在合理的范围呢? 小白查阅一些资料后,发现可以用箱形图,具体描述如下: 箱形图(英文:Box plot),又称为盒须图.盒式图.盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因型状如箱子而得名.箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗. 异常值可以设置为上四分位数的1

  • 使用pandas的box_plot去除异常值

    我就废话不多说了,直接上代码吧! #-*- coding:utf-8 _*- """ @author:Administrator @file: standard_process.py @time: 2018/8/9 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys import os import seaborn as sns

  • python如何去除异常值和缺失值的插值

    1.使用箱型法去除异常值: import numpy as np import pandas as pd import matplotlib as plt import os data = pd.read_excel('try.xls', header=0) # print(data.shape) # print(data.head(10)) # print(data.describe()) neg_list = ['位移'] print("(1)数据的行数为:") R = data.

  • Pandas之drop_duplicates:去除重复项方法

    方法 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数 这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行.返回DataFrame格式的数据. subset : column label or sequence of labels, optional 用来指定特定的列,默认所有列 keep : {'first', 'last', False}, default '

  • 详解pandas使用drop_duplicates去除DataFrame重复项参数

    Pandas之drop_duplicates:去除重复项 方法 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数 这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行.返回DataFrame格式的数据. subset : column label or sequence of labels, optional 用来指定特定的列,默认所有列 keep : {'firs

  • 使用pandas模块实现数据的标准化操作

    如下所示: 3σ 原则 (u-3*σ ,u+3*σ ) 离差标准化 (x-min)/(max-min) 标准差标准化 (x-u)/σ 小数定标标准化 x/10**k k=np.ceil(log10(max(|x|))) 1.3σ原则 u 均值 σ 标准差 正太分布的数据基本都分布在(u-3σ,u+3σ)范围内 其他的数据 import pandas as pd import numpy as np def three_sigma(se): """ 自实现3σ原则,进行数据过滤

  • python实现数据分析与建模

    前言 首先我们做数据分析,想要得出最科学,最真实的结论,必须要有好的数据.而实际上我们一般面对的的都是复杂,多变的数据,所以必须要有强大的数据处理能力,接下来,我从我们面临的最真实的情况,一步一步教会大家怎么做. 1.数据的读取 (1)读取模块 Import pandas as pd Import numpy as np (2)读取表格的全部数据 df = pd.read_csv(".data/HR.csv") (3)读取你所需要的数据 sl_s=df["sactisfact

  • Python数据集库Vaex秒开100GB加数据

    目录 前言 Vaex 数据准备 数据清洗 具体分析 更深入的分析 结论 前言 如果你50GB甚至500GB的数据集,打开他们都很困难了,更别说分析了. 在处理这样的数据集时,我们通常采用3种方法. 第一种对数据进抽样:这里的缺点是显而易见的,样本数据能否代表整个数据. 第二种使用分布式计算:虽然在某些情况下这是一种有效的方法,但是它带来了管理和维护集群的巨大开销.想象一下,必须为一个刚好超出RAM范围的数据集设置一个集群,比如在30-50GB范围内.这有点过分了. 第三种租用一个强大的云服务:例

  • PowerBI和Python关于数据分析的对比

    前言 如果你对数据分析有一定的了解,那你一定听说过一些亲民好用的数据分析的工具,如Excel.Tableau.PowerBI等等等等,它们都是数据分析的得力助手.像经常使用这些根据的伙伴肯定也有苦恼的时候,不足之处也是显而易见:操作繁琐,复用性差,功能相对局限单一. 很多经常会用到数据分析的伙伴会问有没有一款便捷好用的工具!肯定有啊,Python的出现和普及,很容易就能改变这些窘境! 怎么解决呢?--Python Python有很多优点,如果你能很好的运用到工作中,会发现工作效率大大提升,涨薪也

  • python数据可视化自制职位分析生成岗位分析数据报表

    目录 前言 1. 核心功能设计 可视化展示岗位表格数据 分析岗位薪资情况 分析岗位公司情况 数据分析导出 2. GUI设计与实现 3. 功能实现 3.1 职位数据爬虫 3.2 数据预处理 3.3 岗位数据展示 3.4 薪资图表可视化 3.5 岗位公司情况统计 3.6 预览保存 前言 为什么要进行职位分析?职位分析是人力资源开发和管理的基础与核心,是企业人力资源规划.招聘.培训.薪酬制定.绩效评估.考核激励等各项人力资源管理工作的依据.其次我们可以根据不同岗位的职位分析,可视化展示各岗位的数据分析

随机推荐