用Python去除图像的黑色或白色背景实例

用Python去除背景,得到有效的图像

此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理

需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图

对此有两个思路:

用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦)

对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是

在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行得到的numpy矩阵,用255减去numpy矩阵得到的图像就是所求有效图像。(在此我没能实现三通道的图像,只能做出灰度图的图像)程序如下:

from PIL import Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.misc
img = Image.open('1.jpg')
e,g=img.size
img1=img.convert('L')
img1=np.array(img1, dtype='float32')
arr=255-img1
arr1 = arr.sum(axis=0)#每一列求和
arr2 = arr.sum(axis=1)#每一行求和
df=pd.DataFrame(arr)#把像素点转化为dataframe
df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和
df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和
df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来

#根据最后一行,把等于0的列删除掉
for c in df2.columns:
  if df2[c].sum() == 0 :
    df2.drop(columns = [c],inplace = True)

df2.drop(columns=[e],inplace = True)#删除最后一列
df3 = df2.head((df2.shape[0])-1)#删除最后一行
a=255-df3
#df3.values#dataframe转化为numpy
plt.imshow(a)
scipy.misc.toimage(df3.values).save('C:/Users/Administrator.SKY-20180518VHY/Desktop/2.jpg')#保存图像

最终得到的图像为

在此处考虑过将图像变为列表,但在此处做嵌套列表太为复杂,因而放弃,最终利用DataFrame做的,本考虑将三通道分开分别作运算最终得到的R、G、B三通道图像由于大小不匹配无法整合到一起,又失败了。只能得到单通道凑合弄吧。谁有好的思路,求沟通…

完整程序:

import os
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.misc
def save_pic(file_path):

  c = []
  names = os.listdir(file_path) #路径
  #将文件夹中的文件名称与后边的 .dcm分开
  for name in names:
    c.append(name)
  for files in c :
    img = Image.open(file_path+'\\'+files)
    e,g=img.size
    img1=img.convert('L')
    img1=np.array(img1, dtype='float32')
    arr=255-img1
    arr1 = arr.sum(axis=0)#每一列求和
    arr2 = arr.sum(axis=1)#每一行求和
    df=pd.DataFrame(arr)#把像素点转化为dataframe
    df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和
    df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和
    df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来

    #根据最后一行,把等于0的列删除掉
    for c in df2.columns:
      if df2[c].sum() == 0 :
        df2.drop(columns = [c],inplace = True)

    df2.drop(columns=[e],inplace = True)#删除最后一列
    df3 = df2.head((df2.shape[0])-1)#删除最后一行
    #df3.values#dataframe转化为numpy
    a=255-df3
    plt.imshow(a)
    scipy.misc.toimage(a).save('C:/Users/Administrator.SKY-20180518VHY/Desktop'+'/'+files)#保存图像
  print('all is saved')  

save_pic(file_path='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\1')

去除多个文件夹下多张图像,分别为:

程序为:

import os
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.misc
def save_pic(file_path):

  c = []
  d=[]
  names = os.listdir(file_path) #路径
  #将文件夹中的文件名称与后边的 .dcm分开
  for name in names:
    c.append(name)
  for files1 in c:
    n=os.listdir(file_path+'\\'+files1)
    for name in n:
      d.append(file_path+'\\'+files1+'\\'+name)

    for files2 in d :
      img = Image.open(files2)
      e,g=img.size
      img1=img.convert('L')
      img1=np.array(img1, dtype='float32')
      arr=255-img1
      arr1 = arr.sum(axis=0)#每一列求和
      arr2 = arr.sum(axis=1)#每一行求和
      df=pd.DataFrame(arr)#把像素点转化为dataframe
      df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和
      df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和
      df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来

      #根据最后一行,把等于0的列删除掉
      for c in df2.columns:
        if df2[c].sum() == 0 :
          df2.drop(columns = [c],inplace = True)

      df2.drop(columns=[e],inplace = True)#删除最后一列
      df3 = df2.head((df2.shape[0])-1)#删除最后一行
      df3.values#dataframe转化为numpy
      a=255-df3
      plt.imshow(a)
      scipy.misc.toimage(a).save('C:/Users/Administrator.SKY-20180518VHY/Desktop'+'/'+ '%d.jpg'%(d.index(files2)))#保存图像
  print('all is saved')  

save_pic(file_path='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\2')

以上这篇用Python去除图像的黑色或白色背景实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python图像灰度变换及图像数组操作

    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象

  • python 使用plt画图,去除图片四周的白边方法

    用matplotlib.pyplot画的图,显示和保存的图片周围都会有白边,可以去掉.为了显示的更清楚,给图片加了红色的框 代码 "` import matplotlib.pyplot as plt fig, ax = plt.subplots() im = im[:, :, (2, 1, 0)] ax.imshow(im, aspect='equal') plt.axis('off') # 去除图像周围的白边 height, width, channels = im.shape # 如果dpi

  • opencv python 图像去噪的实现方法

    在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用.在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重,中值等替换掉中间的元素.简单说,移除一个像素的噪音是基于本地邻居的. 噪音有一个属性,噪音一般被认为是具有零平均值的随机变量.假设一个像素噪音,p = p0 + n, 其中p0是像素的真实值,n是那个像素的噪音.你可以从不同图像取大量的同一个像素(N)并计算他们的平均值,理想情况下,你应该得到p=p0,因为均值

  • 用Python去除图像的黑色或白色背景实例

    用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图 对此有两个思路: 用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦) 对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是 在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行

  • selenium+python 去除启动的黑色cmd窗口方法

    其实 selenium启动窗口的时候就是 使用了subprocess.Popen 启动的驱动程序的,只要在启动的时候加上启动不显示窗口的参数即可. 下面魔改开始O(∩_∩)O哈哈~ 修改代码 位于 D:\Python35\Lib\site-packages\selenium\webdriver\common\service.py 主要是 Service类的start函数 def start(self): """ Starts the Service. :Exceptions:

  • python去除文件中重复的行实例

    python去除文件中重复的行,我们可以设置一个一个空list,res_list,用来加入没有出现过的字符行! 如果出现在res_list,我们就认为该行句子已经重复了,可以再加入到记录重复句子的list中. 如下代码: # -*- coding: UTF-8 -*- #程序功能是为了完成判断文件中是否有重复句子 #并将重复句子打印出来 res_list = [] #f = open('F:/master/master-work/code_of_graduate/LTP_data/raw_pla

  • python中图像通道分离与合并实例

    我就废话不多说了,直接上代码吧! import cv2 img = cv2.imread("1.jpg") b, g, r = cv2.split(img)  #分离函数 merged = cv2.merge([b,g,r]) #合并函数 cv2.imshow('image',img) cv2.imshow("Blue 1", b) cv2.imshow("Green 1", g) cv2.imshow("Red 1", r)

  • 运用python去除图片水印

    目录 OpenCV + Numpy 函数简介 色彩转换 PIL  + itertools 由于图片水印的种类有很多,今天我们先讲最简单的一种. 即上图中的①类水印,这种水印存在白色背景上的文档里,水印是灰色,需要保留的文字是黑色. 这种通常可以进行简单的亮度/对比度转换,直到水印消失并降低亮度以进行补偿[1].参考别人的方法,我发现可以用多种方法去除水印.大致原理比较相似,下面先讲OpenCV的方法. OpenCV + Numpy 本方法需要使用的库:cv2.numpy.cv2是基于OpenCV

  • Python OpenCV 图像平移的实现示例

    每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分. 再将其拼凑成一个小的系统,争取对该内容有初步理解. 今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念. 检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换. 每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了. 百度一下,看看百科中是如何介绍的. 看过上图中的一些相关简介之后,对于这个概念也并没有太深刻

  • Python去除PDF水印的实现示例

    今天介绍下用 Python 去除 PDF (图片)的水印.思路很简单,代码也很简洁. 首先来考虑 Python 如何去除图片的水印,然后再将思路复用到 PDF 上面. 这张图片是前几天整理<数据结构和算法>PDF里的一个截图,带着公众号的水印. 从上图可以明显看到,为了不影响阅读正文,水印颜色一般比较浅.因此,我们可以利用颜色差这个特征来去掉水印.即:用 Python 读取图片的颜色,并将浅颜色部分变白. Python 标准库 PIL 可以获取图片的颜色,Python2 是系统自带的,Pyth

  • 浅谈Python Pygame图像的基本使用

    笛卡尔坐标系 游戏离不开坐标,我们来康康pygame中坐标是如何设立的吧~ 窗口左上角坐标(0,0),横轴正向向右,纵轴正向向下 实际效果 碰到边框就返回(其实是小球碰撞实验,我不爱用正经的小球,所以-) 代码 import pygame,sys pygame.init() size = width, height = 600, 400 speed = [1,1] BLACK = 0, 0, 0 s = pygame.display.set_mode(size) pygame.display.s

  • python实现图像最近邻插值

    目录 引言: 1.最近邻插值算法思想 2.python实现最邻近插值 引言: 最近邻插值Nearest Neighbour Interpolate算法是图像处理中普遍使用的图像尺寸缩放算法,由于其实现简单计算速度快的特性深受工程师们的喜爱. 图像插值技术是图像超分辨率领域的重要研究方法之一,其目的是根据已有的低分辨率图像(Low Resolution,LR)获得高分辨率图像(High Resolution,HR). 本文一方面对最邻近插值算法的流程进行分析,另一方面借助python实现基本的最近

  • python opencv图像的高通滤波和低通滤波的示例代码

    目录 前言 完整代码 低通滤波 高通滤波 结果展示 低通滤波 高通滤波 前言 上一章我们说明了如何将图像机娘傅里叶变换,将图像由时域变换成频域,并将低频移动至图像中心.那么将低频移动中心后,就可以将图像的低频和高频分开,从而进行低通滤波和高通滤波的处理. 完整代码 低通滤波 import cv2 import numpy as np import matplotlib.pyplot as plt # cv2.imread()在读取图像的时候,默认的是读取成RGB图像,cv2.IMREAD_GRA

随机推荐