python多进程 主进程和子进程间共享和不共享全局变量实例

Python 多进程默认不能共享全局变量

主进程与子进程是并发执行的,进程之间默认是不能共享全局变量的(子进程不能改变主进程中全局变量的值)。

如果要共享全局变量需要用(multiprocessing.Value("d",10.0),数值)(multiprocessing.Array("i",[1,2,3,4,5]),数组)(multiprocessing.Manager().dict(),字典)(multiprocessing.Manager().list(range(5)))。

进程通信(进程之间传递数据)用进程队列(multiprocessing.Queue(),单向通信),管道( multiprocessing.Pipe() ,双向通信)。

import multiprocessing
import time
import os

datalist=['+++'] #全局变量,主进程与子进程是并发执行的,他们不能共享全局变量(子进程不能改变主进程中全局变量的值)

def adddata():
 global datalist
 datalist.append(1)
 datalist.append(2)
 datalist.append(3)
 print("子进程",os.getpid(),datalist)

if __name__=="__main__":

 p=multiprocessing.Process(target=adddata,args=())
 p.start()
 p.join()
 datalist.append("a")
 datalist.append("b")
 datalist.append("c")
 print("主进程",os.getpid(),datalist)

Python 进程之间共享数据(全局变量)

进程之间共享数据(数值型):

import multiprocessing

def func(num):
 num.value=10.78 #子进程改变数值的值,主进程跟着改变

if __name__=="__main__":
 num=multiprocessing.Value("d",10.0) # d表示数值,主进程与子进程共享这个value。(主进程与子进程都是用的同一个value)
 print(num.value)

 p=multiprocessing.Process(target=func,args=(num,))
 p.start()
 p.join()

 print(num.value)

进程之间共享数据(数组型):

import multiprocessing

def func(num):
 num[2]=9999 #子进程改变数组,主进程跟着改变

if __name__=="__main__":
 num=multiprocessing.Array("i",[1,2,3,4,5]) #主进程与子进程共享这个数组
 print(num[:])

 p=multiprocessing.Process(target=func,args=(num,))
 p.start()
 p.join()

 print(num[:])

进程之间共享数据(dict,list):

import multiprocessing

def func(mydict,mylist):
 mydict["index1"]="aaaaaa" #子进程改变dict,主进程跟着改变
 mydict["index2"]="bbbbbb"
 mylist.append(11)  #子进程改变List,主进程跟着改变
 mylist.append(22)
 mylist.append(33)

if __name__=="__main__":
 with multiprocessing.Manager() as MG: #重命名
  mydict=multiprocessing.Manager().dict() #主进程与子进程共享这个字典
  mylist=multiprocessing.Manager().list(range(5)) #主进程与子进程共享这个List

  p=multiprocessing.Process(target=func,args=(mydict,mylist))
  p.start()
  p.join()

  print(mylist)
  print(mydict)

多线程用全局变量(global)

以上这篇python多进程 主进程和子进程间共享和不共享全局变量实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python多进程multiprocessing、进程池用法实例分析

    本文实例讲述了Python多进程multiprocessing.进程池用法.分享给大家供大家参考,具体如下: 内容相关: multiprocessing: 进程的创建与运行 进程常用相关函数 进程池: 为什么要有进程池 进程池的创建与运行:串行.并行 回调函数 多进程multiprocessing: python中的多进程需要使用multiprocessing模块 多进程的创建与运行: 1.进程的创建:进程对象=multiprocessing.Process(target=函数名,args=(参

  • Python通过4种方式实现进程数据通信

    python提供了4种方式来满足进程间的数据通信 1. 使用multiprocessing.Queue可以在进程间通信,但不能在Pool池创建的进程间进行通信 2. 使用multiprocessing.Manager.Queue可以在Pool进程池创建的进程间进行通信 3. 通过Pipe进行线程间的通信, pipe进程间通信的性能高于Queue,但是它只能在两个进程间进行通信 4. 使用Manager类提供的数据结构可以进行进程间的通信 from multiprocessing import P

  • python 在threading中如何处理主进程和子线程的关系

    之前用python的多线程,总是处理不好进程和线程之间的关系.后来发现了join和setDaemon函数,才终于弄明白.下面总结一下. 1.使用join函数后,主进程会在调用join的地方等待子线程结束,然后才接着往下执行. join使用实例如下: import time import random import threading class worker(threading.Thread): def __init__(self): threading.Thread.__init__(self

  • Python多进程编程常用方法解析

    python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程.python提供了非常好用的多进程包Multiprocessing,只需要定义一个函数,python会完成其它所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换.multiprocessing支持子进程.通信和共享数据.执行不同形式的同步,提供了Process.Queue.Pipe.LocK等组件 一.Process 语法:Process([group[,target

  • Python进程的通信Queue、Pipe实例分析

    本文实例讲述了Python进程的通信Queue.Pipe.分享给大家供大家参考,具体如下: 内容相关: 概念:进程的通信 Queue:创建与使用 Pipe:创建与使用 进程通信的概念 进程的资源空间是相互独立的,一般而言是不能相互访问的.但很多情况下进程间需要互相通信,来完成系统的某项功能.进程通过与内核及其它进程之间的互相通信来协调它们的行为. 通信方法: 数据传输:一个进程将它的数据发送给另一个进程[如socket一般,把需要通信的数据传输给对方] 管道:使用一片独立的区域[不在双方的资源空

  • Python进程间通信multiprocess代码实例

    仔细说来,multiprocess不是一个模块而是python中一个操作.管理进程的包. 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块.由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享.重点强调:进程没有任何共享状态,进程修改的数据,改动仅限于该进程内,但是通过一些特殊的方法,可以实现进程之间数据的共享. 有了之前多线程使用以及线程间queue的基础,多进程以及

  • Python3标准库之threading进程中管理并发操作方法

    1. threading进程中管理并发操作 threading模块提供了管理多个线程执行的API,允许程序在同一个进程空间并发的运行多个操作. 1.1 Thread对象 要使用Thread,最简单的方法就是用一个目标函数实例化一个Thread对象,并调用start()让它开始工作. import threading def worker(): """thread worker function""" print('Worker') threads

  • python多进程 主进程和子进程间共享和不共享全局变量实例

    Python 多进程默认不能共享全局变量 主进程与子进程是并发执行的,进程之间默认是不能共享全局变量的(子进程不能改变主进程中全局变量的值). 如果要共享全局变量需要用(multiprocessing.Value("d",10.0),数值)(multiprocessing.Array("i",[1,2,3,4,5]),数组)(multiprocessing.Manager().dict(),字典)(multiprocessing.Manager().list(ran

  • Python多进程入门、分布式进程数据共享实例详解

    本文实例讲述了Python多进程入门.分布式进程数据共享.分享给大家供大家参考,具体如下: python多进程入门 https://docs.python.org/3/library/multiprocessing.html 1.先来个简单的 # coding: utf-8 from multiprocessing import Process # 定义函数 def addUser(): print("addUser") if __name__ == "__main__&qu

  • 浅谈Python 多进程默认不能共享全局变量的问题

    主进程与子进程是并发执行的,进程之间默认是不能共享全局变量的(子进程不能改变主进程中全局变量的值).如果要共享全局变量需要用(multiprocessing.Value("d",10.0),数值)(multiprocessing.Array("i",[1,2,3,4,5]),数组)(multiprocessing.Manager().dict(),字典)(multiprocessing.Manager().list(range(5))).进程通信(进程之间传递数据)

  • Python 多进程原理及实现

    1 进程的基本概念 什么是进程? ​ 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及如何完成:数据集则是程序在执行过程中所需要使用的资源:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志. 进程的生命周期:创建(New).就绪(Runnable).运行(Running).阻塞(Block).销毁(Destroy) 进程的状态(分类)

  • 一篇文章带你搞定Python多进程

    目录 1.Python多进程模块 2.Python多进程实现方法一 3.Python多进程实现方法二 4.Python多线程的通信 5.进程池 1.Python多进程模块 Python中的多进程是通过multiprocessing包来实现的,和多线程的threading.Thread差不多,它可以利用multiprocessing.Process对象来创建一个进程对象.这个进程对象的方法和线程对象的方法差不多也有start(), run(), join()等方法,其中有一个方法不同Thread线

  • python多进程和多线程介绍

    目录 一.什么是进程和线程 二.多进程和多线程 三.python中的多进程和多线程 1.多进程 2.多线程 一.什么是进程和线程 进程是分配资源的最小单位,线程是系统调度的最小单位. 当应用程序运行时最少会开启一个进程,此时计算机会为这个进程开辟独立的内存空间,不同的进程享有不同的空间,而一个CPU在同一时刻只能够运行一个进程,其他进程处于等待状态. 一个进程内部包括一个或者多个线程,这些线程共享此进程的内存空间与资源.相当于把一个任务又细分成若干个子任务,每个线程对应一个子任务. 二.多进程和

  • 一文搞懂Python中的进程,线程和协程

    目录 1.什么是并发编程 2.进程与多进程 3.线程与多线程 4.协程与多协程 5.总结 1.什么是并发编程 并发编程是实现多任务协同处理,改善系统性能的方式.Python中实现并发编程主要依靠 进程(Process):进程是计算机中的程序关于某数据集合的一次运行实例,是操作系统进行资源分配的最小单位 线程(Thread):线程被包含在进程之中,是操作系统进行程序调度执行的最小单位 协程(Coroutine):协程是用户态执行的轻量级编程模型,由单一线程内部发出控制信号进行调度 直接上一张图看看

  • Python中的进程操作模块(multiprocess.process)

    目录 一.multiprocess模块 二.multiprocess.process模块 1.使用process模块创建进程 1 在Python中启动的第一个子进程 2. 查看主进程和子进程的进程号 3. 进阶,多个进程同时运行 4. 通过继承Process类开启进程 5. 进程之间的数据隔离问题 2.守护进程daemon 1. 守护进程的启动 2. 主进程代码执行结束守护进程立即结束 3.socket聊天并发实例 4.进程对象的其他方法:terminate和is_alive 5.进程对象的其他

  • NodeJS父进程与子进程资源共享原理与实现方法

    本文实例讲述了NodeJS父进程与子进程资源共享原理与实现方法.分享给大家供大家参考,具体如下: 实验目标:实现父进程与子进程间资源共享 使用模块:cluster 简介:建立node集群,实现多进程,利用child_process来实现IPC,解决多核利用率,提高性能. 原理: 1 Master-worker主从模式的多进程架构 2 fork()复制进程,充分利用cpu资源(根据内核数决定) 3 每个进程都有自己的区域,如果在各自区域内执行操作,资源并未共享.通过监听message事件和send

  • 手把手带你了解python多进程,多线程

    目录 多进程 多线程 线程安全 高并发拷贝(多进程,多线程) 总结 说明 相应的学习视频见链接,本文只对重点进行总结. 多进程 重点(只要看下面代码的main函数即可) 1.创建 2.如何开守护进程 3.多进程,开销大,用for循环调用多个进程时,后台cpu一下就上去了 import time import multiprocessing import os def dance(who,num): print("dance父进程:{}".format(os.getppid())) fo

随机推荐