Java 二叉树遍历的常用方法

采用前序遍历、中序遍历、后续遍历实现时,即便采用不同的实现方式(递归方式、非递归),它们的算法结构是有很大的相似性。因而针对前三种的遍历我们会总结出对应通用的解决框架,便于在解决二叉树问题时进行使用。

递归方式

递归方式遍历二叉树时,无论是 前序遍历、中序遍历 还是 后续遍历 的方式,它们最大的区别就是对节点数据的访问位置不同。除此之外其结构完全一致,因而我们总结出如下的框架结构:

void traverse(TreeNode root) {
    //终止条件
    if(root == null) return;
    // 前序遍历
    traverse(root.left);
    // 中序遍历
    traverse(root.right);
    // 后序遍历
}

对应注释的位置访问数据就可以实现不同的遍历方式。

例如,前序遍历:

void traverse(TreeNode root) {
    if(root == null) return;
    visit(root);
    traverse(root.left);
    traverse(root.right);
}

同样的中序遍历:

void traverse(TreeNode root) {
    if(root ==null) return;
    traverse(root.left);
    visit(root);
    traverse(root.right);
}

后续遍历:

void traverse(TreeNode root) {
    if(root ==null) return;
    traverse(root.left);
    traverse(root.right)
}

是否非常 easy!!

非递归方式

二叉树非递归遍历说实话有很多种实现方式,但本质上都是模拟整个遍历的过程来实现的。

为了便于理解,其中前序遍历、中序遍历、后序遍历我们采用一套类似的算法框架。

整个算法框架如下:

 public void traverse(TreeNode root) {
    // 边界判断
    if (root == null) {
      return;
    }
    Stack<TreeNode> stack = new Stack<>();
    TreeNode current = root;
    while (current != null || !stack.isEmpty()) {
       //节点非空时,证明父节点的左侧节点非空,直接入栈
      if (current != null) {
        //前序遍历 visit(current)
        stack.push(current);
        current = current.left;
      } else {
        //节点为空,证明左侧节点为空,出栈,更换游标节点方向
        current = stack.pop();
		//中续遍历 visit(current);
        current = current.right;
      }
    }
  }

后序遍历它的遍历顺序为**"左--> 右--> 根",较之与前序遍历的"根--> 左--> 右",好像是有很大的相似性,我们能否针对上边的框架进行修改,使由前序遍历转换成后序遍历??
答案是肯定的,我们可以观察到,可以先求出遍历顺序是"根--> 右--> 左"**"的节点序列,再倒序,便刚好是后序遍历的顺序:左右根。而遍历顺序是根右左的话,很好办,从前序遍历的代码中改两行就是了。

故而,可以选择使用两个栈,其中一个用于遍历,另一个用于结果的倒序。

实现代码如下:

//使用双栈来实现后序遍历
  public void postOrderTraverse(TreeNode root){
    Stack<TreeNode> stack = new Stack<>();
    Stack<Integer> res = new Stack<>();
    TreeNode cur = root;
    while (cur!=null || !stack.isEmpty()) {
      if (cur!=null){
        stack.push(cur);
        res.push(cur.val);
        cur = cur.right; //修改处
      }else{
        cur = stack.pop();
        cur = cur.left;  // 修改处
      }
    }
    while (!res.isEmpty()){
      visit(res.pop());
    }
  }

至此,非递归遍历完成,是不是也很 easy!!

下边我们可以看一下最后一种层次遍历

层次遍历

层次遍历本质上就是阉割版广度优先遍历,我们此处就直接给出 BFS 算法的框架:

/**
* 给定起始节点start和目标节点target,返回其最短路径长度
**/
int BFS(Node start,Node target){
    Queue<Node> q; //核心数据结构
    Set<Node> visited: //某些情况下可以通过byte数组来进行代替
    int step = 0; //记录扩散步数
    //起始节点入队列
    q.add(start);
    visited.offer(start);
    while(q not empty) {
        //必须要用sz来保存q.size(),然后扩散sz不能直接使用q.size()
        int sz = q.size();
        //将队列中的节点进行扩散
        for(int i =0 ; i < sz; i++) {
            Node cur = q.poll();
            // 目标节点判断
            if(cur is target) {
                return step;
            }
            // 邻接结点入队列
            for(Node n:cur.adjs) {
                //未访问节点入队列
                if(n is not int visited) {
                    visitd.add(n);
                    q.offer(n);
                }
            }
        }
        // 更新步数
        step++;
    }
}

此处我们借助 BFS 的框架,直接给出其实现方法:

void LevelOrder(TreeNode root){
    //初始化栈,并放入
    Queue<TreeNode> queue;
    queue.add(root);
    while( !queue.isEmpty()) {
        //出栈
        TreeNode cur = queue.poll();
        //访问节点
        visit(cur);
        //向下一层级扩散
        if(cur.left !=null) queue.add(cur.left);
        if(cur.right !=null) queue.add(cur.right);
    }
}

较之于 BFS,我们会发现,层次遍历,少了好多东西,比如不需要 visited 来标记已访问的节点(二叉树本身结构的特点,不可能出现重复遍历),也不需要将队列中的节点进行扩散等。

总结

至此,二叉树的四种遍历方式总结完成。我们发现其实二叉树所有的遍历方式都有一种通用的算法框架,只要掌握算法本身的框架还是比较容易能够写出实现代码的。

以上就是Java 二叉树遍历的常用方法的详细内容,更多关于Java 二叉树遍历的资料请关注我们其它相关文章!

(0)

相关推荐

  • java二叉树的几种遍历递归与非递归实现代码

    前序(先序)遍历 中序遍历 后续遍历 层序遍历 如图二叉树: 二叉树结点结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x){ val=x; } @Override public String toString(){ return "val: "+val; } } 访问函数 public void visit(TreeNode node){ System.out.print(

  • java二叉树的非递归遍历

    二叉树的递归遍历比较简单,这里就不聊了.今天主要聊聊二叉树的非递归遍历,主要借助于"栈"后进先出的特性来保存节点的顺序,先序遍历和中序遍历相对来说比较简单,重点理解后序遍历. 1. 先看看节点类型: //二叉树的节点类型 private class Node{ int data; //节点值 Node leftChild; //左孩子 Node rightChild; //右孩子 public Node(int data) { this.data=data; } } 2.先序遍历. 非

  • java实现按层遍历二叉树

    本文实例为大家分享了java实现按层遍历二叉树,按层遍历二叉树可以通过队列来实现.其主要思路如下: 1.先将根节点放入队列中 2.每次都从队列中取出一个结点打印该结点的值 3.若这个结点有子结点,则将它的子结点放入队列尾,知道队列为空. 实现代码如下: import java.util.LinkedList; import java.util.Queue; public class LayerTranverse { //按层遍历二叉树 public static void main(String

  • java栈实现二叉树的非递归遍历的示例代码

    一般来说遍历二叉树用到递归,但是用Stack进行遍历也是一个不错的方法. 二叉树设置 class Node{ public int val; public Node left; public Node right; public Node(int v) { val=v; left=null; right=null; } } public class Main { public static void main(String[] args) { Node head =new Node(0); No

  • Java二叉树的遍历思想及核心代码实现

    二叉树在计算机中的存储方式往往线性结构,线性存储分为顺序存储和链式存储,将二叉树按层序编号. 顺序结构:按编号的顺序进行存储,对于完全二叉树而言,顺序存储可以反映二叉树的逻辑,但是对于大多数的二叉树则无法反映其逻辑关系,不过可以用 ^ 来代替不存在的结点,但是如果这个树是一个右斜树,就非常浪费存储空间.所以二叉树的存储形式一般为链式存储结构. 链式存储:每一个结点都分有一个数据域(data)和两个指针域(lchild和rchild),指针域分别指向左孩子和右孩子,若为空则为null.遍历方式有四

  • Java二叉树的四种遍历(递归和非递归)

    二叉树的遍历可以分为前序.中序.后序.层次遍历. 前中后是指何时访问中间节点,即前序遍历,遍历节点的顺序为:中->左->右: 中序遍历,遍历节点的顺序为:左->中->右: 后序遍历,遍历节点的顺序为:左->右->中. 前序遍历 递归实现 public void preorder_Traversal(TreeNode root) { if(root==null)return; //访问节点的逻辑代码块 System.out.print(root.val+" &q

  • Java实现的二叉树常用操作【前序建树,前中后递归非递归遍历及层序遍历】

    本文实例讲述了Java实现的二叉树常用操作.分享给大家供大家参考,具体如下: import java.util.ArrayDeque; import java.util.Queue; import java.util.Stack; //二叉树的建树,前中后 递归非递归遍历 层序遍历 //Node节点 class Node { int element; Node left; Node right; public Node() { } public Node(int element) { this.

  • JAVA二叉树的几种遍历(递归,非递归)实现

    首先二叉树是树形结构的一种特殊类型,它符合树形结构的所有特点.本篇博客会针对二叉树来介绍一些树的基本概念,二叉树的基本操作(存储,返回树的深度,节点个数,每一层的节点个数),二叉树的四种遍历(层次,先序,中序,后序) 一.基本概念 二叉树有5种基本形态: 注:二叉树有序树,就是说一个节点的左右节点是有大小之分的,我们通常设定为左孩子一定大于右孩子,下面的实现都是基于这个规则的.二叉树分为三种:满二叉树,完全二叉树,不完全二叉树 二叉树的四种遍历:层次,先序,中序,后序首先是非递归实现上图的满二叉

  • java实现二叉树遍历的三种方式

    本文实例为大家分享了java实现二叉树遍历的具体代码,供大家参考,具体内容如下 二叉树如下: 遍历结果如下: 以下是实现代码: package binTree; import java.util.Stack; /** * @author bin.zhang * @version 2017年8月29日 上午10:22:01 */ public class BinTreeTraversal { public static void main(String[] args) { System.out.p

  • Java实现二叉树的深度优先遍历和广度优先遍历算法示例

    本文实例讲述了Java实现二叉树的深度优先遍历和广度优先遍历算法.分享给大家供大家参考,具体如下: 1. 分析 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列. 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历.中序遍历.后序遍历.具体说明如下: 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树. 中序遍历:对任一子树,先遍历其左子树,然

随机推荐