python 如何做一个识别率百分百的OCR

写在前面

当然这里说的百分百可能有点夸张,但其实想象一下,游戏里面的某个窗口的字符就是那种样子,不会变化的。而且识别的字符可能也不需要太多。中文有大几千个常用字,还有各种符号,其实都不需要。

这里针对的场景很简单,主要是有以下几点:

  • 识别的字符不多:只要识别几十个常用字符即可,比如说26个字母,数字,还有一些中文。
  • 背景统一,字体一致:我们不是做验证码识别,我们要识别的字符都是清晰可见的。
  • 字符和背景易分割:一般来说就是对图片灰度化之后,黑底白字或者白底黑字这种。

技术栈

这里用到的主要就是python+opencv了。

  • python3
  • opencv-python

环境主要是以下的库:

pip install opencv-python
pip install imutils
pip install matplotlib

实现思路

首先看下图片的灰度图。

第一步:二值化,将灰度转换为只有黑白两种颜色。

第二步:图像膨胀,因为我们要通过找轮廓算法找到每个字符的轮廓然后分割,如果是字符还好,中文有很多左右偏旁,三点水这种无法将一个整体进行分割,这里通过膨胀将中文都黏在一起。

第三步:找轮廓。

第四步:外接矩形。我们需要的字符是一个矩形框,而不是无规则的。

第五步:过滤字符,这里比如说标点符号对我来说没用,我通过矩形框大小把它过滤掉。

第六步:字符分割,根据矩形框分割字符。

第七步:构造数据集,每一类基本上放一两张图片就可以。

第八步:向量搜索+生成结果,根据数据集的图片,进行向量搜索得到识别的标签。然后根据图片分割的位置,对识别结果进行排序。

具体实现

读取图片

首先先读取待识别的图片。

import cv2
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import NoNorm
import imutils
from PIL import Image

img_file = "test.png"
im = cv2.imread(img_file, 0)

使用matplotlib画图结果如下:

二值化

在进行二值化之前,首先进行灰度分析。

灰度值是在0到255之间,0代表黑色,255代表白色。可以看到这里背景色偏黑的,基本集中在灰度值30,40附近。而字符偏白,大概在180灰度这里。

这里选择100作为分割的阈值。

thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]

2值化后效果如下:

图像膨胀

接下来进行一个图像的纵向膨胀,选择一个膨胀的维度,这里选择的是7。

kernel = np.ones((7,1),np.uint8)
dilation = cv2.dilate(thresh, kernel, iterations=1)

找轮廓

接下来调用opencv找一下轮廓,

# 找轮廓
cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

接下来我们再读取一下原图,绘制轮廓看下轮廓的样子。

外接矩形

对于轮廓我们可以做外接矩形,这里可以看下外接矩形的效果。

过滤字符

这里过滤字符的原理其实就是将轮廓内的颜色填充成黑色。下面的代码是将高度小于15的轮廓填充成黑色。

for i, c in enumerate(cnts):
    x, y, w, h = cv2.boundingRect(c)
    if (h < 15):
        cv2.fillPoly(thresh, pts=[c], color=(0))

填充后可以看到标点符号就没了。

字符分割

因为图像是个矩阵,最后字符分割就是使用切片进行分割。

for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    if (h < 15):
        continue
    cropImg = thresh[y:y+h, x:x+w]
    plt.imshow(cropImg)
    plt.show()

构造数据集

最后我们创建数据集进行标注,就是把上面的都串起来,然后将分割后的图片保存到文件夹里,并且完成标注。

import cv2
import numpy as np
import imutils
from matplotlib import pyplot as plt
import uuid

def split_letters(im):
    # 2值化
    thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]
    # 纵向膨胀
    kernel = np.ones((7, 1), np.uint8)
    dilation = cv2.dilate(thresh, kernel, iterations=1)
    # 找轮廓
    cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)

    # 过滤太小的
    for i, c in enumerate(cnts):
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            cv2.fillPoly(thresh, pts=[c], color=(0))

    # 分割
    char_list = []
    for c in cnts:
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            continue
        cropImg = thresh[y:y + h, x:x + w]
        char_list.append((x, cropImg))
    return char_list

for i in range(1, 10):
    im = cv2.imread(f"test{i}.png", 0)

    for ch in split_letters(im):
        print(ch[0])
        filename = f"ocr_datas/{str(uuid.uuid4())}.png"
        cv2.imwrite(filename, ch[1])

向量搜索(分类)

向量搜索其实就是个最近邻搜索的问题,我们可以使用sklearn中的KNeighborsClassifier。

训练模型代码如下:

import os
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import cv2
import pickle
import json

max_height = 30
max_width = 30

def make_im_template(im):
    template = np.zeros((max_height, max_width))
    offset_height = int((max_height - im.shape[0]) / 2)
    offset_width = int((max_width - im.shape[1]) / 2)
    template[offset_height:offset_height + im.shape[0], offset_width:offset_width + im.shape[1]] = im
    return template

label2index = {}
index2label = {}
X = []
y = []
index = 0
for _dir in os.listdir("ocr_datas"):
    new_dir = "ocr_datas/" + _dir
    if os.path.isdir(new_dir):
        label2index[_dir] = index
        index2label[index] = _dir
        for filename in os.listdir(new_dir):
            if filename.endswith("png"):
                im = cv2.imread(new_dir + "/" + filename, 0)
                tpl = make_im_template(im)  # 生成固定模板
                tpl = tpl / 255  # 归一化
                X.append(tpl.reshape(max_height*max_width))
                y.append(index)
        index += 1

print(label2index)
print(index2label)

model = KNeighborsClassifier(n_neighbors=1)
model.fit(X, y)

with open("simple_ocr.pickle", "wb") as f:
    pickle.dump(model, f)

with open("simple_index2label.json", "w") as f:
    json.dump(index2label, f)

这里有一点值得说的是如何构建图片的向量,我们分隔的图片的长和宽是不固定的,这里首先需要使用一个模型,将分隔后的图片放置到模板的中央。然后将模型转换为一维向量,当然还可以做一个归一化。

生成结果

最后生成结果就是还是先分割一遍,然后转换为向量,调用KNeighborsClassifier模型,找到最匹配的一个作为结果。当然这是识别一个字符的结果,我们还需要根据分割的位置进行一个排序,才能得到最后的结果。

import cv2
import numpy as np
import imutils
from sklearn.neighbors import KNeighborsClassifier
import pickle
import json

with open("simple_ocr.pickle", "rb") as f:
    model = pickle.load(f)

with open("simple_ocr_index2label.json", "r") as f:
    index2label = json.load(f)

max_height = 30
max_width = 30

def make_im_template(im):
    template = np.zeros((max_height, max_width))
    offset_height = int((max_height - im.shape[0]) / 2)
    offset_width = int((max_width - im.shape[1]) / 2)
    template[offset_height:offset_height + im.shape[0], offset_width:offset_width + im.shape[1]] = im
    return template.reshape(max_height*max_width)

def split_letters(im):
    # 2值化
    thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]
    # 纵向膨胀
    kernel = np.ones((7, 1), np.uint8)
    dilation = cv2.dilate(thresh, kernel, iterations=1)
    # 找轮廓
    cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)

    # 过滤太小的
    for i, c in enumerate(cnts):
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            cv2.fillPoly(thresh, pts=[c], color=(0))

    # 分割
    char_list = []
    for c in cnts:
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            continue
        cropImg = thresh[y:y + h, x:x + w]
        char_list.append((x, cropImg))
    return char_list

def ocr_recognize(fname):
    im = cv2.imread(fname, 0)
    char_list = split_letters(im)

    result = []
    for ch in char_list:
        res = model.predict([make_im_template(ch[1])])[0]  # 识别单个结果
        result.append({
            "x": ch[0],
            "label": index2label[str(res)]
        })
    result.sort(key=lambda k: (k.get('x', 0)), reverse=False) # 因为是单行的,所以只需要通过x坐标进行排序。

    return "".join([it["label"] for it in result])

print(ocr_recognize("test1.png"))

以上就是python 如何做一个识别率百分百的OCR的详细内容,更多关于python 做一个OCR的资料请关注我们其它相关文章!

(0)

相关推荐

  • 如何使用Python进行PDF图片识别OCR

    使用场景 使用图片识别可以快速提取图片中的信息,方便高效. Python并不能直接对PDF进行识别,所以如果是识别PDF的话,需要先将PDF转化为图片,然后再进行识别. 必备工具 Python 可以安装3.7及以上版本 tesseract-ocr 下载地址: https://github.com/UB-Mannheim/tesseract/wiki 使用最新版本即可 需要用到的库 pip install pillow pip install opencv-python pip install f

  • Python3使用tesserocr识别字母数字验证码的实现

    一.背景 最近有个需求是从一个后台的留言网站爬取留言数据,后台管理网站必然涉及到了登录,登录就有个验证码的问题必须得解决,由于验证码是从后端生成的,并且不了解其生成规则,那就只能通过图像识别技术来做验证码识别了!通过查阅资料发现Python中的的tesserocr这个库好像使用的比较多,所以对这个库进行了一番研究,并且实现了那个后台网站验证码的识别. 二.准备工作 1. 安装tesserocr 由于我使用的Python版本是python3.5,所以一下所有操作都是基于python3的,如果有py

  • Python调用百度OCR实现图片文字识别的示例代码

    百度AI提供了一天50000次的免费文字识别额度,可以愉快的免费使用!下面直接上方法: 首先在百度AI创建一个应用,按照下图创建即可,创建后会获得如下: 创建后会获得如下信息: APP_ID = '******' API_KEY = '************' SECRET_KEY = '**************' 下面就是百度API包的安装,在终端cmd输入如下语句直接pip方式安装,注意是 baidu-api 哦! pip install --user baidu-aip 接下来上py

  • 如何基于Python代码实现高精度免费OCR工具

    近期Github开源了一款基于Python开发.名为Textshot的截图工具,刚开源不到半个月已经500+Star. 这两天抽空看了一下Textshot的源码,的确是一个值得介绍的项目. 相对于大多数OCR工具复杂工程.差强人意的效果,Textshot具有明显的优势, 项目简单 技术点丰富 项目简单 Textshot整个项目只有1个Python文件.139行代码,没有复杂的第三方库应用,也不涉及过多后端算法的调用. 技术点丰富 Textshot这个项目虽然只有短短的139行代码,但是,却涉及P

  • python3.7中安装paddleocr及paddlepaddle包的多种方法

    升级pip pip版本必须升级到20.0.4版本才能应用: 方法一.在pycharm中对pip进行升级: 方法二.通过命令进行升级 python3.7 -m pip install --upgrade pip 下载paddleOCR 下载链接:https://github.com/PaddlePaddle/PaddleOCR 打开paddleOCR文件夹中requirements.txt文件,更改文件中opencv-python为opencv-python == 4.2.0.32,因为支持pad

  • python3安装OCR识别库tesserocr过程图解

    OCR简介 OCR,即Optical Character Recognition,光学字符识别,是指通过扫描字符,然后通过其形状将其翻译成电子文本的过程,对应图形验证码来说,它们都是一些不规则的字符,这些字符是由字符稍加扭曲变换得到的内容,我们可以使用OCR技术来讲其转化为电子文本,然后将结果提取交给服务器,便可以达到自动识别验证码的过程. window环境 环境材料准备 Window10 Python-3.7.3.tgz tesserocr安装包 安装tesserocr 1.打开链接,http

  • python图片验证码识别最新模块muggle_ocr的示例代码

    一.官方文档 https://pypi.org/project/muggle-ocr/ 二模块安装 pip install muggle-ocr # 因模块过新,阿里/清华等第三方源可能尚未更新镜像,因此手动指定使用境外源,为了提高依赖的安装速度,可预先自行安装依赖:tensorflow/numpy/opencv-python/pillow/pyyaml 三.使用代码 # 导入包 import muggle_ocr # 初始化:model_type 包含了 ModelType.OCR/Model

  • Python 实现任意区域文字识别(OCR)操作

    本文的OCR当然不是自己从头开发的,是基于百度智能云提供的API(我感觉是百度在中国的人工智能领域值得称赞的一大贡献),其提供的API完全可以满足个人使用,相对来说简洁准确率高. 安装OCR Python SDK OCR Python SDK目录结构 ├── README.md ├── aip //SDK目录 │ ├── __init__.py //导出类 │ ├── base.py //aip基类 │ ├── http.py //http请求 │ └── ocr.py //OCR └── se

  • Python基于百度AI实现OCR文字识别

    百度AI功能还是很强大的,百度AI开放平台真的是测试接口的天堂,免费接口很多,当然有量的限制,但个人使用是完全够用的,什么人脸识别.MQTT服务器.语音识别等等,应有尽有. 看看OCR识别免费的量 快速安装:执行pip install baidu-aip即可 新建一个AipOcr: from aip import AipOcr """ 你的 APPID AK SK """ APP_ID = '你的 App ID' API_KEY = '你的 Ap

  • 基于Python的OCR实现示例

    摘要: 近几天在做一个东西,其中需要对图像中的文字进行识别,看了前辈们的文章,找到两个较简单的方法:使用python的pytesseract库和调用百度AI平台接口.写下这篇文章做一个比较简短的记录和学习,后期如果有新内容再行补充. 1.使用python的pytesseract库 主要是安装库,比较简单,直接使用 pip install 安装即可:另外,如果进行中文识别,需要下载语言包,并配置好相应环境,具体操作可以进行百度,教程有不少.因为这个识别方法比较简单(但效果并不是很理想),下面直接贴

随机推荐