opencv实现图像倾斜校正

本文实例为大家分享了opencv实现图像倾斜校正的具体代码,供大家参考,具体内容如下

今天的任务是如图这两种情况,我现在的情况是和如图一样的,左图左边倾斜一点儿,那么我需要把左边压低倾斜校正。右图,右边倾斜我需要把右边下压到水平位置倾斜校正。我的场景不会有大角度的倾斜,就这么点可能的不会超过45°的小角度。
标准的传统图像处理方法。首先就是灰度,二值化,取轮廓,筛选得到目标(面积最大的那个),得到倾斜角度,转正。
具体过程就不详细说了,都在代码里面一看就懂。效果图如下:

#include <iostream>
#include"opencv2/opencv.hpp"
using namespace std;
using namespace cv;

bool cmp_x(cv::Point pt1, cv::Point pt2)
{
    return (pt1.x < pt2.x);
}

cv::Point2f get_mid_pt(cv::Point2f pt1, cv::Point2f pt2)
{
    return cv::Point2f((pt1.x + pt2.x)/2.0,(pt1.y + pt2.y) / 2.0);
}

double get_point_angle(cv::Point2f pointO,cv::Point2f pointA)
{
    double angle = 0;
    cv::Point2f point;
    double temp;
    point = cv::Point2f((pointA.x - pointO.x), (pointA.y - pointO.y));

    if ((0==point.x) && (0==point.y))
    {
        return 0;
    }

    if (0==point.x)
    {
        angle = 90;
        return angle;
    }

    if (0==point.y)
    {
        angle = 0;
        return angle;
    }

    temp = fabsf(float(point.y)/float(point.x));
    temp = atan(temp);
    temp = temp*180/CV_PI ;

    if ((0<point.x)&&(0<point.y))
    {
        angle = 360 - temp;
        return angle;
    }

    if ((0>point.x)&&(0<point.y))
    {
        angle = 360 - (180 - temp);
        return angle;
    }

    if ((0<point.x)&&(0>point.y))
    {
        angle = temp;
        return angle;
    }

    if ((0>point.x)&&(0>point.y))
    {
        angle = 180 - temp;
        return angle;
    }

    printf("sceneDrawing :: getAngle error!");
    return -1;
}

int RotateImage(const cv::Mat &src, double angle, cv::Mat &dst, cv::Mat &rot_matrix, bool crop = true, int flags = cv::INTER_NEAREST,
                int borderMode = cv::BORDER_CONSTANT, const cv::Scalar &borderValue = cv::Scalar())
{
    if(0 == src.cols * src.rows) { return 0;}
    cv::Point2f center(src.cols / 2.0f, src.rows / 2.0f);
    rot_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
    if (crop) {
        if (dst.data == NULL) {
            dst = cv::Mat(src.rows, src.cols, src.type());
        }
    } else {
        cv::Rect bbox = cv::RotatedRect(center, cv::Size2f(src.cols, src.rows), angle).boundingRect();
        double *p = (double *) rot_matrix.data;
        p[2] += bbox.width / 2.0 - center.x;
        p[5] += bbox.height / 2.0 - center.y;
        if (dst.rows != bbox.height || dst.cols != bbox.width) {
            dst = cv::Mat(bbox.height, bbox.width, src.type());
        }
    }
    cv::warpAffine(src, dst, rot_matrix, dst.size(), flags, borderMode, borderValue);
    return 0;
}

int main(int argc, char *argv[])
{
    cv::Mat img = cv::imread("/data_1/everyday/0325/13.jpeg");

    cv::Mat m_gray,m_bi;
    cv::cvtColor(img,m_gray,CV_BGR2GRAY);
    cv::threshold(m_gray,m_bi,100,255,THRESH_BINARY_INV);

    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    findContours(m_bi,contours,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE,Point());

    RotatedRect rt_rot_max,rt_tmp;
    int max_szie = -1;
    for(int i=0;i<contours.size();i++)
    {
        rt_tmp = minAreaRect(Mat(contours[i]));
        if(rt_tmp.size.area() > max_szie)
        {
            max_szie = rt_tmp.size.area();
            rt_rot_max = rt_tmp;
        }
    }
    std::vector<cv::Point2f> v_pt(4);
    rt_rot_max.points(v_pt.data());

    std::sort(v_pt.begin(),v_pt.end(),cmp_x);

    cv::Point2f pt_left = get_mid_pt(v_pt[0], v_pt[1]);
    cv::Point2f pt_right = get_mid_pt(v_pt[2], v_pt[3]);

    double ang = get_point_angle(pt_left,pt_right);
    std::cout<<"ang="<<ang<<std::endl;

    cv::circle(img,v_pt[0],6,Scalar(50,12,189),3);
    cv::circle(img,v_pt[1],6,Scalar(10,255,255),3);
    cv::circle(img,v_pt[2],6,Scalar(150,120,19),3);
    cv::circle(img,v_pt[3],6,Scalar(0,0,0),3);

    cv::Mat m_rot,rot_matrix;
    RotateImage(img, -ang, m_rot, rot_matrix, false);

    cv::imshow("m_rot",m_rot);
    cv::imshow("m_bi",m_bi);
    cv::imshow("m_gray",m_gray);
    cv::imshow("img",img);
    cv::waitKey(0);

    return 0;
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV实现图像校正功能

    一. 需求分析 首先是需求: 1.利用 OpenCV 里面的仿射变换函 数实现对图像进行一些基本的变换,如平移.旋转.缩放 2.学习透视变换原理,对一个矩形进行透视变换,并将变换结果绘制出来.先调用 OpenCV 函数实现透视变换,自己编写代码实现透视变换. 3.识别一张倾斜拍摄的纸张,找出轮廓,提取出该纸张的位置 4. 假设你已通过图像处理的算法找到发生形变的纸张的位置,那么对这个倾斜 纸张进行变换,得到纸张的垂直视图,实现文档校准. 然后是分析: 1.首先要调用OpenCV的函数对图像进行平

  • opencv利用霍夫变换检测直线进行图片校正

    利用霍夫变换检测直线,校正拍摄倾斜的图片 #include<opencv2\opencv.hpp> #include <iostream> using namespace cv; using namespace std; #define ERROR 1234 //度数转换 double DegreeTrans(double theta) { double res = theta / CV_PI * 180; return res; } //逆时针旋转图像degree角度(原尺寸)

  • OpenCV实现相机校正

    本文实例为大家分享了OpenCV实现相机校正的具体代码,供大家参考,具体内容如下 1. 相机标定 根据张正友校正算法,利用棋盘格数据校正对车载相机进行校正,计算其内参矩阵,外参矩阵和畸变系数. 标定的流程是: 准备棋盘格数据,即用于标定的图片 对每一张图片提取角点信息 在棋盘上绘制提取到的角点(非必须,只是为了显示结果) 利用提取的角点对相机进行标定 获取相机的参数信息 2.关于相机校正用到的几个API: 1.寻找棋盘图中的棋盘角点 rect, corners = cv2.findChessbo

  • opencv实现图像倾斜校正

    本文实例为大家分享了opencv实现图像倾斜校正的具体代码,供大家参考,具体内容如下 今天的任务是如图这两种情况,我现在的情况是和如图一样的,左图左边倾斜一点儿,那么我需要把左边压低倾斜校正.右图,右边倾斜我需要把右边下压到水平位置倾斜校正.我的场景不会有大角度的倾斜,就这么点可能的不会超过45°的小角度.标准的传统图像处理方法.首先就是灰度,二值化,取轮廓,筛选得到目标(面积最大的那个),得到倾斜角度,转正.具体过程就不详细说了,都在代码里面一看就懂.效果图如下: #include <iost

  • python中opencv实现图片文本倾斜校正

    本项目为python项目需要安装python及python的opencv模块:opencv_python-4.0.1-cp37-cp37m-win32.whl 和 python的矩阵运算模块:numpy. 1.第一步,安装python3.7,具体安装步骤略. 2.第二步,使用pip安装python的矩阵运算模块:numpy. python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

  • Python+OpenCV实现旋转文本校正方式

    假设我们有一幅图像,图像中的文本被旋转了一个未知的角度.为了对文字进行角度的校正,我们需要完成如下几个步骤: 1.检测出图中的文本范围 2.计算出文本被旋转的角度 3.将图像旋转特定的角度 第一步.读取图像,并做二值化处理 #读取图像,做二值化处理 img = cv.imread('img/imageTextR.png') gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('gray', gray) #像素取反,变成白字黑底 # gray

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • java通过jni调用opencv处理图像的方法

    1. 建立java文件 public class getImageFeature { static{ System.loadLibrary("getImageFeatureDll"); } public native int getImageFeatureByName(String filename); public native int getImageFeatureByMemory(); public static void main(String[] args) { getIma

  • Opencv实现图像灰度线性变换

    本文实例为大家分享了Opencv实现图像灰度线性变换的具体代码,供大家参考,具体内容如下 通过图像灰度线性变换提高图像对比度和亮度,原图像为src,目标图像为dst,则dst(x,y) = * src(x,y) + . 不仅对单通道图像可以做灰度线性变换,对三通道图像同样可以. #include<opencv2/opencv.hpp>; #include<iostream> using namespace cv; using namespace std; int main(int

  • python opencv对图像进行旋转且不裁剪图片的实现方法

    最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[

  • Java OpenCV实现图像镜像翻转效果

    本文实例为大家分享了Java OpenCV实现图像镜像翻转效果的具体代码,供大家参考,具体内容如下 主要使用OpenCV的flip()方法,可以实现图像的垂直.水平以及同时垂直镜像翻转. flip是Core的静态方法,用法为: public static void flip(Mat src, Mat dst, int flipCode) 参数说明: src:输入图像: dst:输出图像: flipCode: = 0 图像向下翻转 > 0 图像向右翻转 < 0 图像同时向下向右翻转 代码如下:

  • OpenCV计算图像的水平和垂直积分投影

    本文实例为大家分享了OpenCV计算图像的水平和垂直积分投影的具体代码,供大家参考,具体内容如下 #include <cv.h> #include <highgui.h> #pragma comment( lib, "cv.lib" ) #pragma comment( lib, "cxcore.lib" ) #pragma comment( lib, "highgui.lib" ) int main() { IplIma

随机推荐