Python中ROS和OpenCV结合处理图像问题

目录
  • 一、安装ROS-OpenCV
  • 二、简单案例分析
    • 1.usb_cam.launch
    • 2.cv_bridge_test.py
    • 3.rqt_image_view
  • 三、CvBridge相关API
    • 1.imgmsg_to_cv2()
    • 2.cv2_to_imgmsg()
  • 四、利用ROS+OpenCV实现人脸检测案例
    • 1.usb_cam.launch
    • 2.face_detector.launch
      • 2.1 launch
      • 2.2 face_detector.py
      • 2.3 两个xml文件
    • 3.rqt_image_view
  • 五、利用ROS+OpenCV实现帧差法物体追踪
    • 1.usb_cam.launch
    • 2.motion_detector.launch
      • 2.1 launch
      • 2.2 motion_detector.py
  • 3.rqt_image_view

一、安装ROS-OpenCV

安装OpenCVsudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv
ROS进行图像处理是依赖于OpenCV库的。ROS通过一个叫CvBridge的功能包,将获取的图像数据转换成OpenCV的格式,OpenCV处理之后,传回给ROS进行图像显示(应用),如下图:

二、简单案例分析

我们使用ROS驱动获取摄像头数据,将ROS获得的数据通过CvBridge转换成OpenCV需要的格式,调用OpenCV的算法库对这个图片进行处理(如画一个圆),然后返回给ROS进行rviz显示。

1.usb_cam.launch

首先我们建立一个launch文件,可以调用摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.cv_bridge_test.py

建立一个py文件,是python2的。实现接收ROS发的图像信息,在图像上画一个圆后,返回给ROS。返回的话题名称是cv_bridge_image。运行py文件rosrun xxx(功能包名) cv_bridge_test.py
如果出现权限不够的情况,记得切换到py文件目录下执行:sudo chmod +x *.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

class image_converter:
    def __init__(self):
        # 创建cv_bridge,声明图像的发布者和订阅者
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
        self.bridge = CvBridge()
        self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback)

    def callback(self,data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print e

        # 在opencv的显示窗口中绘制一个圆,作为标记
        (rows,cols,channels) = cv_image.shape
        if cols > 60 and rows > 60 :
            cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)

        # 显示Opencv格式的图像
        cv2.imshow("Image window", cv_image)
        cv2.waitKey(3)

        # 再将opencv格式额数据转换成ros image格式的数据发布
        try:
            self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
        except CvBridgeError as e:
            print e

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("cv_bridge_test")
        rospy.loginfo("Starting cv_bridge_test node")
        image_converter()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down cv_bridge_test node."
        cv2.destroyAllWindows()

3.rqt_image_view

在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。

三、CvBridge相关API

1.imgmsg_to_cv2()

将ROS图像消息转换成OpenCV图像数据;

# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
    cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
    print e

2.cv2_to_imgmsg()

将OpenCV格式的图像数据转换成ROS图像消息;

# 再将opencv格式额数据转换成ros image格式的数据发布
try:
    self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
    print e

四、利用ROS+OpenCV实现人脸检测案例

1.usb_cam.launch

这个launch和上一个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.face_detector.launch

人脸检测算法采用基于Harr特征的级联分类器对象检测算法,检测效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件和两个xml文件,分别如下:

2.1 launch

<launch>
    <node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen">
        <remap from="input_rgb_image" to="/usb_cam/image_raw" />
        <rosparam>
            haar_scaleFactor: 1.2
            haar_minNeighbors: 2
            haar_minSize: 40
            haar_maxSize: 60
        </rosparam>
        <param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
        <param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" />
    </node>
</launch>

2.2 face_detector.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError

class faceDetector:
    def __init__(self):
        rospy.on_shutdown(self.cleanup);

        # 创建cv_bridge
        self.bridge = CvBridge()
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)

        # 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
        cascade_1 = rospy.get_param("~cascade_1", "")
        cascade_2 = rospy.get_param("~cascade_2", "")

        # 使用级联表初始化haar特征检测器
        self.cascade_1 = cv2.CascadeClassifier(cascade_1)
        self.cascade_2 = cv2.CascadeClassifier(cascade_2)

        # 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
        self.haar_scaleFactor  = rospy.get_param("~haar_scaleFactor", 1.2)
        self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
        self.haar_minSize      = rospy.get_param("~haar_minSize", 40)
        self.haar_maxSize      = rospy.get_param("~haar_maxSize", 60)
        self.color = (50, 255, 50)

        # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
        self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)

    def image_callback(self, data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
            frame = np.array(cv_image, dtype=np.uint8)
        except CvBridgeError, e:
            print e

        # 创建灰度图像
        grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        # 创建平衡直方图,减少光线影响
        grey_image = cv2.equalizeHist(grey_image)

        # 尝试检测人脸
        faces_result = self.detect_face(grey_image)

        # 在opencv的窗口中框出所有人脸区域
        if len(faces_result)>0:
            for face in faces_result:
                x, y, w, h = face
                cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)

        # 将识别后的图像转换成ROS消息并发布
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))

    def detect_face(self, input_image):
        # 首先匹配正面人脸的模型
        if self.cascade_1:
            faces = self.cascade_1.detectMultiScale(input_image,
                    self.haar_scaleFactor,
                    self.haar_minNeighbors,
                    cv2.CASCADE_SCALE_IMAGE,
                    (self.haar_minSize, self.haar_maxSize))

        # 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
        if len(faces) == 0 and self.cascade_2:
            faces = self.cascade_2.detectMultiScale(input_image,
                    self.haar_scaleFactor,
                    self.haar_minNeighbors,
                    cv2.CASCADE_SCALE_IMAGE,
                    (self.haar_minSize, self.haar_maxSize))

        return faces

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("face_detector")
        faceDetector()
        rospy.loginfo("Face detector is started..")
        rospy.loginfo("Please subscribe the ROS image.")
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down face detector node."
        cv2.destroyAllWindows()

2.3 两个xml文件

链接

3.rqt_image_view

运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。

五、利用ROS+OpenCV实现帧差法物体追踪

1.usb_cam.launch

这个launch和前两个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.motion_detector.launch

物体追踪方法采用帧差法,追踪效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件,如下:

2.1 launch

<launch>
    <node pkg="robot_vision" name="motion_detector" type="motion_detector.py" output="screen">
        <remap from="input_rgb_image" to="/usb_cam/image_raw" />
        <rosparam>
            minArea: 500
            threshold: 25
        </rosparam>
    </node>
</launch>

2.2 motion_detector.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError

class motionDetector:
    def __init__(self):
        rospy.on_shutdown(self.cleanup);

        # 创建cv_bridge
        self.bridge = CvBridge()
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)

        # 设置参数:最小区域、阈值
        self.minArea   = rospy.get_param("~minArea",   500)
        self.threshold = rospy.get_param("~threshold", 25)

        self.firstFrame = None
        self.text = "Unoccupied"

        # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
        self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)

    def image_callback(self, data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
            frame = np.array(cv_image, dtype=np.uint8)
        except CvBridgeError, e:
            print e

        # 创建灰度图像
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (21, 21), 0)

        # 使用两帧图像做比较,检测移动物体的区域
        if self.firstFrame is None:
            self.firstFrame = gray
            return
        frameDelta = cv2.absdiff(self.firstFrame, gray)
        thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1]

        thresh = cv2.dilate(thresh, None, iterations=2)
        binary, cnts, hierarchy= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        for c in cnts:
            # 如果检测到的区域小于设置值,则忽略
            if cv2.contourArea(c) < self.minArea:
               continue 

            # 在输出画面上框出识别到的物体
            (x, y, w, h) = cv2.boundingRect(c)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2)
            self.text = "Occupied"

        # 在输出画面上打当前状态和时间戳信息
        cv2.putText(frame, "Status: {}".format(self.text), (10, 20),
            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        # 将识别后的图像转换成ROS消息并发布
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8"))

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("motion_detector")
        rospy.loginfo("motion_detector node is started...")
        rospy.loginfo("Please subscribe the ROS image.")
        motionDetector()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down motion detector node."
        cv2.destroyAllWindows()

3.rqt_image_view

运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。(鉴于我的测试环境比较糟糕,并且这个算法本身精度不高,就不展示最终效果了)

到此这篇关于Python中ROS和OpenCV结合处理图像问题的文章就介绍到这了,更多相关ROS和OpenCV处理图像内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+Opencv实现图像匹配功能(模板匹配)

    本文实例为大家分享了Python+Opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下 1.原理 简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相似度,最后就计算出了非常多的相似度: 如果只是单个目标的匹配,那只需要取相似度最大值所在的位置就可以得出匹配位置: 如果要匹配多个目标,那就设定一个阈值,就是说,只要相似度大于比如0.8,就认为是要匹配的目标. 1.1 相似度度量指标 差值平方和匹配 CV_TM_SQDIFF 标准化差值平方和匹

  • Python OpenCV机器学习之图像识别详解

    目录 背景 一.人脸识别 二.车牌识别 三.DNN图像分类 背景 OpenCV中也提供了一些机器学习的方法,例如DNN:本篇将简单介绍一下机器学习的一些应用,对比传统和前沿的算法,能从其中看出优劣: 一.人脸识别 主要有以下两种实现方法: 1.哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法: 实现步骤: 创建Haar级联器: 导入图片并将其灰度化: 调用函数接口进行人脸识别: 函数原型: detectMultiScale(img,scaleFactor,minNeighbors) sc

  • OpenCV利用python来实现图像的直方图均衡化

    1.直方图 直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值. 我们使用cv2.calcHist方法得到直方图 cv2.calcHist(images, channels, mask, histSize, ranges): -img: 图像 -channels: 选取图像的哪个通道 -histSize: 直方图大小 -ranges: 直方图范围 cv2.minMaxLoc: 返回直方图的最大最小值,以及他们的索引 import cv2 impo

  • Python OpenCV读取中文路径图像的方法

    引言 这几天做点小东西,涉及到OpenCV读取中文图像的问题 如果直接读取中文路径的图像,往往返回[] import cv2 cv_im = cv2.imread('老干妈.jpg') 缘起 偶然发现opencv 读取图像,解决imread不能读取中文路径的问题文章,代码简单有效,可以参考下文章底部附录 im = cv2.imdecode(np.fromfile(im_name,dtype=np.uint8),-1) 但是作者代码注释中说该方法读取的图像的通道就会变为RGB,但是我实验仍为BGR

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

  • python opencv实现图像配准与比较

    本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下 代码 from skimage import io import cv2 as cv import numpy as np import matplotlib.pyplot as plt img_path1 = '2_HE_maxarea.png' img_path2 = '2_IHC_maxarea.png' img1 = io.imread(img_path1) img2 = io.imre

  • Python中ROS和OpenCV结合处理图像问题

    目录 一.安装ROS-OpenCV 二.简单案例分析 1.usb_cam.launch 2.cv_bridge_test.py 3.rqt_image_view 三.CvBridge相关API 1.imgmsg_to_cv2() 2.cv2_to_imgmsg() 四.利用ROS+OpenCV实现人脸检测案例 1.usb_cam.launch 2.face_detector.launch 2.1 launch 2.2 face_detector.py 2.3 两个xml文件 3.rqt_imag

  • python opencv 找出图像中的最大轮廓并填充(生成mask)

    本文主要介绍了python opencv 找出图像中的最大轮廓并填充,分享给大家,具体如下: import cv2 import numpy as np from PIL import Image from joblib import Parallel from joblib import delayed # Parallel 和 delayed是为了使用多线程处理 # 使用前需要安装joblib:pip install joblib # img_stack的shape为:num, h, w #

  • python中opencv图像叠加、图像融合、按位操作的具体实现

    目录 1图像叠加 2图像融合 3按位操作 1图像叠加 可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. NOTE: OpenCV添加是饱和操作,也就是有上限值,而Numpy添加是模运算. 添加两个图像时, OpenCV功能将提供更好的结果.所以总是更好地坚持OpenCV功能. 代码: import cv2 import numpy as np x = np.uint8

  • Python中OpenCV图像特征和harris角点检测

    目录 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 import cv2 import numpy as np img =cv2.imread('pie.png') print('img.shape',img.

  • python中的opencv 图像梯度

    目录 图像梯度 Sobel理论基础 计算水平方向偏导数的近似值 计算垂直方向偏导数的近似值 Sobel算子及函数使用 方向 计算x方向和y方向的边缘叠加 Scharr算子及函数使用 Sobel算子和Scharr算子的比较 Laplacian算子及函数使用 算子总结 图像梯度 图像梯度计算的是图像变化的速度.对于图像的边缘部分,其灰度值变化较大,梯度值也较大:相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小.图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得到梯度的

  • Python+OpenCV实现将图像转换为二进制格式

    在学习tensorflow的过程中,有一个问题,tensorflow在训练的过程中读取的是二进制图像数据库文件,而不是图像文件,因此 在进行训练.测试之前需要将图像文件转换为二进制格式. 下面是我在ubuntu中使用python+OpenCV读取图像并转换为二进制格式文件的代码. #coding=utf-8 ''' Created on 2016年3月24日 使用Opencv读取图像将其保存为二进制格式文件,再读取该二进制文件,转换为图像进行显示 @author: hanchao ''' imp

  • python使用OpenCV模块实现图像的融合示例代码

    可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. 三种融合 注意融合时,一般来说两个图像的尺寸是一样大小的,如果大小不一样,需要把大的图像的某一部分先截出来,与小的图先融合,再作为整体替换掉原来大图中抠出的小图部分. """ # @Time : 2020/4/3 # @Author : JMChen """ impor

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

  • Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)

    可以直接跳到最后整体代码看一看是不是很少的代码!!!! 思路: 1. 数据的整合 2. 图片的灰度转化 3. 图片的二值转化 4. 图片的轮廓识别 5. 得到图片的顶点数 6. 依据顶点数判断图像形状 一.原数据的展示 图片文件共36个文件夹,每个文件夹有100张图片,共3600张图片. 每一个文件夹里都有形同此类的图形 二.数据的整合 对于多个文件夹,分析起来很不方便,所有决定将其都放在一个文件夹下进行分析,在python中具体实现如下: 本次需要的包 import cv2 import os

  • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    这篇博客将介绍如何使用OpenCV和深度学习应用全面嵌套的边缘检测.并将对图像和视频流应用全面嵌套边缘检测,然后将结果与OpenCV的标准Canny边缘检测器进行比较. 1. 效果图 愤怒的小鸟--原始图 VS Canny边缘检测图 VS HED边缘检测图 花朵--原始图 VS Canny边缘检测图 VS HED边缘检测图 视频效果图GIF 如下 2. 全面嵌套边缘检测与Canny边缘检测 2.1 Hed与Canny边缘检测对比 Holistically-Nested Edge Detectio

随机推荐