pandas时间序列之pd.to_datetime()的实现
目录
- 解析来自各种来源和格式的时间序列信息
- 时间序列解析之小试牛刀
- 时间序列解析之磨刀霍霍
- 1. 指定识别的format
- 2. 遇到DataFrame
- 3. 遇到不能识别的处理方法
- 4. origin的用法
解析来自各种来源和格式的时间序列信息
pd.to_datetime( arg,#int, float, str, datetime, list, tuple, 1-d array, Series DataFrame/dict-like errors='raise',# {'ignore', 'raise', 'coerce'}, default 'raise' dayfirst=False, yearfirst=False, utc=None, format=None,#格式,比如 "%d/%m/%Y" exact=True, unit=None,#单位str, default 'ns',可以是(D,s,ms,us,ns) infer_datetime_format=False, origin='unix',#指定从什么时间开始,默认为19700101 cache=True, )
时间序列解析之小试牛刀
pd.to_datetime()
import datetime import pandas as pd import numpy as np dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'), datetime.datetime(2018, 1, 1)]) dti
DatetimeIndex([‘2018-01-01’, ‘2018-01-01’, ‘2018-01-01’], dtype=‘datetime64[ns]’, freq=None)
pd.to_datetime(['2020-04-20', '20/04/2020','Apr 20 2020'])
DatetimeIndex([‘2020-04-20’, ‘2020-04-20’, ‘2020-04-20’], dtype=‘datetime64[ns]’, freq=None)
import time time.asctime()
‘Tue Apr 7 21:50:17 2020’
pd.to_datetime(time.asctime())
Timestamp(‘2020-04-07 21:50:17’)
还有更加偷懒的办法,假如整理数据时遇到了大量的时间需要输入,比如2020-11-11 00:00:00,输入-和:太浪费时间了,而且时间之间没有什么变化规律可循,这种情况下可以直接输入20201111000000进行记录,之后再借助pd.to_datetime()解析,省时省力一步到位。
pd.to_datetime('20201111000000')
Timestamp(‘2020-11-11 00:00:00’)
时间序列解析之磨刀霍霍
1. 指定识别的format
pd.to_datetime('2020/12/12', format='%Y/%m/%d')
Timestamp(‘2020-12-12 00:00:00’)
pd.to_datetime('12-11-2010 00:00', format='%d-%m-%Y %H:%M')
Timestamp(‘2010-11-12 00:00:00’)
2. 遇到DataFrame
df = pd.DataFrame({'year': [2015, 2016], ....: 'month': [2, 3], ....: 'day': [4, 5], ....: 'hour': [2, 3]}) df
year month day hour
0 2015 2 4 2
1 2016 3 5 3
pd.to_datetime(df)
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]
pd.to_datetime(df[['year','month','day']])
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
3. 遇到不能识别的处理方法
pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Index([‘2009/07/31’, ‘asd’], dtype=‘object’)
pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ParserError: Unknown string format: asd
pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
DatetimeIndex([‘2009-07-31’, ‘NaT’], dtype=‘datetime64[ns]’, freq=None)
4. origin的用法
指定时间
pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))
DatetimeIndex([‘1960-01-02', ‘1960-01-03', ‘1960-01-04'], dtype=‘datetime64[ns]', freq=None)
不指定时间则默认从19700101开始
pd.to_datetime([1, 2, 3], unit='D')
DatetimeIndex([‘1970-01-02', ‘1970-01-03', ‘1970-01-04'], dtype=‘datetime64[ns]', freq=None)
到此这篇关于pandas时间序列之pd.to_datetime()的实现的文章就介绍到这了,更多相关pandas pd.to_datetime()内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!