python用pd.read_csv()方法来读取csv文件的实现

csv文件是一种用,和换行符区分数据记录和字段的一种文件结构,可以用excel表格编辑,也可以用记事本编辑,是一种类excel的数据存储文件,也可以看成是一种数据库。pandas提供了pd.read_csv()方法可以读取其中的数据并且转换成DataFrame数据帧。python的强大之处就在于他可以把不同的数据库类型,比如txt/csv/.xls/.sql转换成统一的DataFrame格式然后进行统一的处理。真是做到了标准化。我们可以用以下代码来演示csv文件的读取操作。

import pandas as pd
data1 = pd.read_csv('rating.csv')
print(data1)
print("************取消第一行作为表头*************")
data2 = pd.read_csv('rating.csv',header=None)
print(data2)
print("************为各个字段取名**************")
data3 = pd.read_csv('rating.csv',names=['user_id','book_id','rating'])
print(data3)
print("***********将某一字段设为索引***************")
data3 = pd.read_csv('rating.csv',
    names=['user_id','book_id','rating'],
    index_col = "user_id")
print(data3)
print("************用sep参数设置分隔符**************")
data4 = pd.read_csv('rating.csv',
    names=['user_id','book_id','rating'],
    sep=',')
print(data4)
print("************自动补全缺失数据为NaN**************")
data5 = pd.read_csv('data.csv',header=None)
print(data5)

输出的结果如下:

1   258  5
0  2  4081  4
1  2   260  5
2  2  9296  5
3  2  2318  3
4  2    26  4
5  2   315  3
6  2    33  4
7  2   301  5
************取消第一行作为表头*************
   0     1  2
0  1   258  5
1  2  4081  4
2  2   260  5
3  2  9296  5
4  2  2318  3
5  2    26  4
6  2   315  3
7  2    33  4
8  2   301  5
************为各个字段取名**************
   user_id  book_id  rating
0        1      258       5
1        2     4081       4
2        2      260       5
3        2     9296       5
4        2     2318       3
5        2       26       4
6        2      315       3
7        2       33       4
8        2      301       5
***********将某一字段设为索引***************
         book_id  rating
user_id                 
1            258       5
2           4081       4
2            260       5
2           9296       5
2           2318       3
2             26       4
2            315       3
2             33       4
2            301       5
************用sep参数设置分隔符**************
   user_id  book_id  rating
0        1      258       5
1        2     4081       4
2        2      260       5
3        2     9296       5
4        2     2318       3
5        2       26       4
6        2      315       3
7        2       33       4
8        2      301       5
************自动补全缺失数据为NaN**************
    0    1   2     3   4
0   1  2.0   3   4.0   5
1   6  7.0   8   NaN  10
2  11  NaN  13  14.0  15
[Finished in 4.5s]

对代码的具体解释,可以参考星号隔离bar中的注释。

到此这篇关于python用pd.read_csv()方法来读取csv文件的实现的文章就介绍到这了,更多相关python读取csv文件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

  • 教你用Python读取CSV文件的5种方式

    目录 第一招:简单的读取 第二招:用nametuple 第三招:用tuple类型转换 第四招:用DictReader 第五招:用字典转换 典型的数据集stocks.csv: 一个股票的数据集,其实就是常见的表格数据.有股票代码,价格,日期,时间,价格变动和成交量.这个数据集其实就是一个表格数据,有自己的头部和身体. 第一招:简单的读取 我们先来看一种简单读取方法,先用csv.reader()函数读取文件的句柄f生成一个csv的句柄,其实就是一个迭代器,我们看一下这个reader的源码: 喂给re

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • python pandas读取csv后,获取列标签的方法

    在Python中,经常会去读csv文件,如下 import pandas as pd import numpy as np df = pd.read_csv("path.csv") data = np.array(df.loc[:,:]) 通过这种方式得到的data,不包含第一行,一般来说,第一行即是列标签.那么如何获取第一行的内容呢.如下 column_headers = list(df.columns.values) 以上这篇python pandas读取csv后,获取列标签的方法

  • Python读取csv文件分隔符设置方法

    Windows下的分隔符默认的是逗号,而MAC的分隔符是分号.拿到一份用分号分割的CSV文件,在Win下是无法正确读取的,因为CSV模块默认调用的是Excel的规则. 所以我们在读取文件的时候需要添加分割符变量. import csv import os cwd = os.getcwd() print ("Current folder is %s" % (cwd) ) csvfile = open( cwd + '\data\eclipse\change-metrics.csv','r

  • python读取csv文件示例(python操作csv)

    复制代码 代码如下: import csvfor line in open("test.csv"):name,age,birthday = line.split(",")name = name.strip(' \t\r\n');age = age.strip(' \t\r\n');birthday = birthday.strip(' \t\r\n'); print (name + '\t' + age + '\t' + birthday) csv文件 复制代码 代

  • python读取当前目录下的CSV文件数据

    在处理数据的时候,经常会碰到CSV类型的文件,下面将介绍如何读取当前目录下的CSV文件,步骤如下 1.获取当前目录所有的CSV文件名称: #创建一个空列表,存储当前目录下的CSV文件全称 file_name = [] #获取当前目录下的CSV文件名 def name(): #将当前目录下的所有文件名称读取进来 a = os.listdir() for j in a: #判断是否为CSV文件,如果是则存储到列表中 if os.path.splitext(j)[1] == '.csv': file_

  • Python导出数据到Excel可读取的CSV文件的方法

    本文实例讲述了Python导出数据到Excel可读取的CSV文件的方法.分享给大家供大家参考.具体实现方法如下: import csv with open('eggs.csv', 'wb') as csvfile: #spamwriter = csv.writer(csvfile, delimiter=' ',quotechar='|', #quoting=csv.QUOTE_MINIMAL) spamwriter = csv.writer(csvfile, dialect='excel') s

  • python用pd.read_csv()方法来读取csv文件的实现

    csv文件是一种用,和换行符区分数据记录和字段的一种文件结构,可以用excel表格编辑,也可以用记事本编辑,是一种类excel的数据存储文件,也可以看成是一种数据库.pandas提供了pd.read_csv()方法可以读取其中的数据并且转换成DataFrame数据帧.python的强大之处就在于他可以把不同的数据库类型,比如txt/csv/.xls/.sql转换成统一的DataFrame格式然后进行统一的处理.真是做到了标准化.我们可以用以下代码来演示csv文件的读取操作. import pan

  • python 使用pandas读取csv文件的方法

    目录 pandas读取csv文件的操作 1. 读取csv文件 在这里记录一下,python使用pandas读取文件的方法用到pandas库的read_csv函数 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 16:48:32 2022 @author: zxy """ # 导入包 import numpy as np import pandas as pd import matplotlib.

  • 使用pandas读取csv文件的指定列方法

    根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • pandas读取csv文件提示不存在的解决方法及原因分析

    一般情况是数据文件没有在当前路径,那么它是无法读取数据的.另外,如果路径名包含中文它也是无法读取的. (1)可以选择: import os os.getcwd() 获得当前的工作路径,把你的数据文件放在此路径上就可以了,就可以直接使用pd.read_csv("./_.csv") (2)可以选择: 使用os.chdir(path),path是你的那个数据文件路径 (3)可以选择: 不更改路径,直接调用df=pd.read_csv(U"文件存储的盘(如C盘) :/文件夹/文件名.

  • 使用Python pandas读取CSV文件应该注意什么?

    示例文件 将以下内容保存为文件 people.csv. id,姓名,性别,出生日期,出生地,职业,爱好 1,张小三,m,1992-10-03,北京,工程师,足球 2,李云义,m,1995-02-12,上海,程序员,读书 下棋 3,周娟,女,1998-03-25,合肥,护士,音乐,跑步 4,赵盈盈,Female,2001-6-32,,学生,画画 5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治 如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:

  • Python pandas读取CSV文件的注意事项(适合新手)

    目录 前言 示例文件 文件编码 空值 日期错误 函数映射 方法1:直接使用labmda表达式 方法二:使用自定义函数 方法三:使用数值字典映射 总结 前言 本文是给使用pandas的新手而写,主要列出一些常见的问题,根据笔者所踩过的坑,进行归纳总结,希望对读者有所帮助. 示例文件 将以下内容保存为文件 people.csv. id,姓名,性别,出生日期,出生地,职业,爱好 1,张小三,m,1992-10-03,北京,工程师,足球 2,李云义,m,1995-02-12,上海,程序员,读书 下棋 3

  • ​python中pandas读取csv文件​时如何省去csv.reader()操作指定列步骤

    优点: 方便,有专门支持读取csv文件的pd.read_csv()函数. 将csv转换成二维列表形式 支持通过列名查找特定列. 相比csv库,事半功倍 1.读取csv文件 import pandas as pd   file="c:\data\test.csv" csvPD=pd.read_csv(file)   df = pd.read_csv('data.csv', encoding='gbk') #指定编码     read_csv()方法参数介绍 filepath_or_buf

随机推荐