详解Python prometheus_client使用方式

背景说明

服务部署在阿里云的K8s上,配置了基于Prometheus的Grafana监控。原本用的是自定义的Metrics接口统计,上报一些字段,后面发现Prometheus自带的监控非常全面好用,适合直接抓取统计,所以做了一些改变。

Python prometheus-client 安装

pip install prometheus-client

Python封装

# encoding: utf-8
from prometheus_client import Counter, Gauge, Summary
from prometheus_client.core import CollectorRegistry
from prometheus_client.exposition import choose_encoder

class Monitor:
    def __init__(self):
    # 注册收集器&最大耗时map
    self.collector_registry = CollectorRegistry(auto_describe=False)
    self.request_time_max_map = {}

    # 接口调用summary统计
    self.http_request_summary = Summary(name="http_server_requests_seconds",
                                   documentation="Num of request time summary",
                                   labelnames=("method", "code", "uri"),
                                   registry=self.collector_registry)
    # 接口最大耗时统计
    self.http_request_max_cost = Gauge(name="http_server_requests_seconds_max",
                                  documentation="Number of request max cost",
                                  labelnames=("method", "code", "uri"),
                                  registry=self.collector_registry)

    # 请求失败次数统计
    self.http_request_fail_count = Counter(name="http_server_requests_error",
                                      documentation="Times of request fail in total",
                                      labelnames=("method", "code", "uri"),
                                      registry=self.collector_registry)

    # 模型预测耗时统计
    self.http_request_predict_cost = Counter(name="http_server_requests_seconds_predict",
                                        documentation="Seconds of prediction cost in total",
                                        labelnames=("method", "code", "uri"),
                                        registry=self.collector_registry)
    # 图片下载耗时统计
    self.http_request_download_cost = Counter(name="http_server_requests_seconds_download",
                                         documentation="Seconds of download cost in total",
                                         labelnames=("method", "code", "uri"),
                                         registry=self.collector_registry)

    # 获取/metrics结果
    def get_prometheus_metrics_info(self, handler):
        encoder, content_type = choose_encoder(handler.request.headers.get('accept'))
        handler.set_header("Content-Type", content_type)
        handler.write(encoder(self.collector_registry))
        self.reset_request_time_max_map()

    # summary统计
    def set_prometheus_request_summary(self, handler):
        self.http_request_summary.labels(handler.request.method, handler.get_status(), handler.request.path).observe(handler.request.request_time())
        self.set_prometheus_request_max_cost(handler)

    # 自定义summary统计
    def set_prometheus_request_summary_customize(self, method, status, path, cost_time):
        self.http_request_summary.labels(method, status, path).observe(cost_time)
        self.set_prometheus_request_max_cost_customize(method, status, path, cost_time)

    # 失败统计
    def set_prometheus_request_fail_count(self, handler, amount=1.0):
        self.http_request_fail_count.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

    # 自定义失败统计
    def set_prometheus_request_fail_count_customize(self, method, status, path, amount=1.0):
        self.http_request_fail_count.labels(method, status, path).inc(amount)

    # 最大耗时统计
    def set_prometheus_request_max_cost(self, handler):
        requset_cost = handler.request.request_time()
        if self.check_request_time_max_map(handler.request.path, requset_cost):
            self.http_request_max_cost.labels(handler.request.method, handler.get_status(), handler.request.path).set(requset_cost)
            self.request_time_max_map[handler.request.path] = requset_cost

    # 自定义最大耗时统计
    def set_prometheus_request_max_cost_customize(self, method, status, path, cost_time):
        if self.check_request_time_max_map(path, cost_time):
            self.http_request_max_cost.labels(method, status, path).set(cost_time)
            self.request_time_max_map[path] = cost_time

    # 预测耗时统计
    def set_prometheus_request_predict_cost(self, handler, amount=1.0):
        self.http_request_predict_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

    # 自定义预测耗时统计
    def set_prometheus_request_predict_cost_customize(self, method, status, path, cost_time):
        self.http_request_predict_cost.labels(method, status, path).inc(cost_time)

    # 下载耗时统计
    def set_prometheus_request_download_cost(self, handler, amount=1.0):
        self.http_request_download_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

    # 自定义下载耗时统计
    def set_prometheus_request_download_cost_customize(self, method, status, path, cost_time):
        self.http_request_download_cost.labels(method, status, path).inc(cost_time)

    # 校验是否赋值最大耗时map
    def check_request_time_max_map(self, uri, cost):
        if uri not in self.request_time_max_map:
            return True
        if self.request_time_max_map[uri] < cost:
            return True
        return False

    # 重置最大耗时map
    def reset_request_time_max_map(self):
        for key in self.request_time_max_map:
            self.request_time_max_map[key] = 0.0

调用

import tornado
import tornado.ioloop
import tornado.web
import tornado.gen
from datetime import datetime
from tools.monitor import Monitor

global g_monitor

class ClassifierHandler(tornado.web.RequestHandler):
    def post(self):
        # TODO Something you need
        # work....
        # 统计Summary,包括请求次数和每次耗时
        g_monitor.set_prometheus_request_summary(self)
        self.write("OK")

class PingHandler(tornado.web.RequestHandler):
    def head(self):
        print('INFO', datetime.now(), "/ping Head.")
        g_monitor.set_prometheus_request_summary(self)
        self.write("OK")

    def get(self):
        print('INFO', datetime.now(), "/ping Get.")
        g_monitor.set_prometheus_request_summary(self)
        self.write("OK")

class MetricsHandler(tornado.web.RequestHandler):
    def get(self):
        print('INFO', datetime.now(), "/metrics Get.")
		g_monitor.set_prometheus_request_summary(self)
		# 通过Metrics接口返回统计结果
    	g_monitor.get_prometheus_metrics_info(self)

def make_app():
    return tornado.web.Application([
        (r"/ping?", PingHandler),
        (r"/metrics?", MetricsHandler),
        (r"/work?", ClassifierHandler)
    ])

if __name__ == "__main__":
    g_monitor = Monitor()

	app = make_app()
    app.listen(port)
    tornado.ioloop.IOLoop.current().start()

Metrics返回结果实例

到此这篇关于详解Python prometheus_client使用方式的文章就介绍到这了,更多相关Python prometheus_client内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用Python编写Prometheus监控的方法

    要使用python编写Prometheus监控,需要你先开启Prometheus集群.可以参考//www.jb51.net/article/148895.htm 安装.在python中实现服务器端.在Prometheus中配置请求网址,Prometheus会定期向该网址发起申请获取你想要返回的数据. 使用Python和Flask编写Prometheus监控 Installation pip install flask pip install prometheus_client Metrics P

  • 使用Python和Prometheus跟踪天气的使用方法

    开源监控系统 Prometheus 集成了跟踪多种类型的时间序列数据,但如果没有集成你想要的数据,那么很容易构建一个.一个经常使用的例子使用云端提供商的自定义集成,它使用提供商的 API 抓取特定的指标. 创建自定义 Prometheus 集成以跟踪最大的云端提供商:地球母亲. 开源监控系统 Prometheus 集成了跟踪多种类型的时间序列数据,但如果没有集成你想要的数据,那么很容易构建一个.一个经常使用的例子使用云端提供商的自定义集成,它使用提供商的 API 抓取特定的指标.但是,在这个例子

  • 使用 prometheus python 库编写自定义指标的方法(完整代码)

    虽然 prometheus 已有大量可直接使用的 exporter 可供使用,以满足收集不同的监控指标的需要.例如,node exporter可以收集机器 cpu,内存等指标,cadvisor可以收集容器指标.然而,如果需要收集一些定制化的指标,还是需要我们编写自定义的指标. 本文讲述如何使用 prometheus python 客户端库和 flask 编写 prometheus 自定义指标. 安装依赖库 我们的程序依赖于flask和prometheus client两个库,其 requirem

  • 如何基于Python和Flask编写Prometheus监控

    介绍 Prometheus 的基本原理是通过 HTTP 周期性抓取被监控组件的状态. 任意组件只要提供对应的 HTTP 接口并且符合 Prometheus 定义的数据格式,就可以接入 Prometheus 监控. Prometheus Server 负责定时在目标上抓取 metrics(指标)数据并保存到本地存储.它采用了一种 Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,也让服务端可以更加方便地水平扩展. 如果监控数据达到告警阈值,Promet

  • Python调用Prometheus监控数据并计算

    目录 Prometheus是什么 Prometheus基础概念 什么是时间序列数据 什么是targets(目标) 什么是metrics(指标) 什么是PromQL(函数式查询语言) 如何监控远程Linux主机 Prometheus HTTP API 支持的 API 认证方法 数据返回格式 数据写入 监控数据查询 什么是Grafana 工作使用场景 CPU峰值计算 CPU均值计算 内存峰值计算 内存均值计算 导出excel 参考链接: Prometheus是什么 Prometheus是一套开源监控

  • 使用python测试prometheus的实现

    为了更直观的了解prometheus如何工作,本文使用prometheus的python库来做一些相应的测试. python库的github地址是https://github.com/prometheus 根据提示,使用pip安装prometheus_client pip3 install prometheus_client 然后根据文档中的示例文件并简单修改,运行一个client 文件命名为prometheus_python_client.py from prometheus_client i

  • 详解Python prometheus_client使用方式

    背景说明 服务部署在阿里云的K8s上,配置了基于Prometheus的Grafana监控.原本用的是自定义的Metrics接口统计,上报一些字段,后面发现Prometheus自带的监控非常全面好用,适合直接抓取统计,所以做了一些改变. Python prometheus-client 安装 pip install prometheus-client Python封装 # encoding: utf-8 from prometheus_client import Counter, Gauge, S

  • 详解python里使用正则表达式的分组命名方式

    详解python里使用正则表达式的分组命名方式 分组匹配的模式,可以通过groups()来全部访问匹配的元组,也可以通过group()函数来按分组方式来访问,但是这里只能通过数字索引来访问,如果某一天产品经理需要修改需求,让你在它们之中添加一个分组,这样一来,就会导致匹配的数组的索引的变化,作为开发人员的你,必须得一行一行代码地修改.因此聪明的开发人员又想到一个好方法,把这些分组进行命名,只需要对名称进行访问分组,不通过索引来访问了,就可以避免这个问题.那么怎么样来命名呢?可以采用(?P<nam

  • 详解Python的三种拷贝方式

    在练习列表的操作的时候我发现赋值之后的列表会随着被赋值的列表改变而改变,就像是C语言中用指向同一实际变量的指针进行操作一样.这是因为Python中有三种拷贝方式:浅拷贝.深拷贝和赋值拷贝. 赋值拷贝就像是定义新指针并指向了同一内存区域,对任意一个列表名进行操作,其他的也会变化. 深拷贝的作用是完全拷贝一个列表A并赋值给另一列表B.以下是深度拷贝与列表操作的样例.记得在使用深拷贝的时候要引入copy包. import copy #对列表的增删改 numbers_Ori = ['one', 'two

  • 详解Python修复遥感影像条带的两种方式

    GDAL修复Landsat ETM+影像条带 Landsat7 ETM+卫星影像由于卫星传感器故障,导致此后获取的影像出现了条带.如下图所示, 影像中均匀的布满条带. 使用GDAL修复影像条带的代码如下: def gdal_repair(tif_name, out_name, bands): """ tif_name(string): 源影像名 out_name(string): 输出影像名 bands(integer): 影像波段数 """ #

  • 详解Python+opencv裁剪/截取图片的几种方式

    前言 在计算机视觉任务中,如图像分类,图像数据集必不可少.自己采集的图片往往存在很多噪声或无用信息会影响模型训练.因此,需要对图片进行裁剪处理,以防止图片边缘无用信息对模型造成影响.本文介绍几种图片裁剪的方式,供大家参考. 一.手动单张裁剪/截取 selectROI:选择感兴趣区域,边界框框选x,y,w,h selectROI(windowName, img, showCrosshair=None, fromCenter=None): . 参数windowName:选择的区域被显示在的窗口的名字

  • 详解python连接telnet和ssh的两种方式

    目录 Telnet 连接方式 ssh连接方式 Telnet 连接方式 #!/usr/bin/env python # coding=utf-8 import time import telnetlib import logging __author__ = 'Evan' save_log_path = 'result.txt' file_mode = 'a+' format_info = '%(asctime)s - %(filename)s[line:%(lineno)d] - %(level

  • 详解Python进行数据相关性分析的三种方式

    目录 相关性实现 NumPy 相关性计算 SciPy 相关性计算 Pandas 相关性计算 线性相关实现 线性回归:SciPy 实现 等级相关 排名:SciPy 实现 等级相关性:NumPy 和 SciPy 实现 等级相关性:Pandas 实现 相关性的可视化 带有回归线的 XY 图 相关矩阵的热图 matplotlib 相关矩阵的热图 seaborn 相关性实现 统计和数据科学通常关注数据集的两个或多个变量(或特征)之间的关系.数据集中的每个数据点都是一个观察值,特征是这些观察值的属性或属性.

  • 详解Python中matplotlib模块的绘图方式

    目录 1.matplotlib之父简介 2.matplotlib图形结构 3.matplotlib两种画绘图方法 方法一:使用matplotlib.pyplot 方法二:面向对象方法 1.matplotlib之父简介 matplotlib之父John D. Hunter已经去世,他的一生辉煌而短暂,但是他开发的的该开源库还在继续着辉煌.国内介绍的资料太少了,查阅了一番整理如下: 1968 出身于美国的田纳西州代尔斯堡. 之后求学于普林斯顿大学. 2003年发布Matplotlib 0.1版,初衷

  • 详解Python获取线程返回值的三种方式

    目录 方法一 方法二 方法三 最后的话 提到线程,你的大脑应该有这样的印象:我们可以控制它何时开始,却无法控制它何时结束,那么如何获取线程的返回值呢?今天就分享一下自己的一些做法. 方法一 使用全局变量的列表,来保存返回值 ret_values = [] def thread_func(*args):     ...     value = ...     ret_values.append(value) 选择列表的一个原因是:列表的 append() 方法是线程安全的,CPython 中,GI

  • 一文详解Python中实现单例模式的几种常见方式

    目录 Python 中实现单例模式的几种常见方式 元类(Metaclass): 装饰器(Decorator): 模块(Module): new 方法: Python 中实现单例模式的几种常见方式 元类(Metaclass): class SingletonType(type): """ 单例元类.用于将普通类转换为单例类. """ _instances = {} # 存储单例实例的字典 def __call__(cls, *args, **kwa

随机推荐