OpenCV利用python来实现图像的直方图均衡化

1.直方图

直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值。

我们使用cv2.calcHist方法得到直方图

cv2.calcHist(images, channels, mask, histSize, ranges):

-img: 图像
-channels: 选取图像的哪个通道
-histSize: 直方图大小
-ranges: 直方图范围

cv2.minMaxLoc: 返回直方图的最大最小值,以及他们的索引

import cv2
import numpy as np
def ImageHist(image, type):
  color = (255, 255,255)
  windowName = 'Gray'
  if type == 1:    #判断通道颜色类型 B-G-R
    color = (255, 0, 0)
    windowName = 'B hist'
  elif type == 2:
    color = (0,255,0)
    windowName = 'G hist'
  else:
    color = (0,0,255)
  # 得到直方图
  hist = cv2.calcHist([image],[0],None,[256],[0,255])
  # 得到最大值和最小值
  minV,maxV,minL,maxL = cv2.minMaxLoc(hist)
  histImg = np.zeros([256,256,3],np.uint8)
  #直方图归一化
  for h in range(256):
    interNormal = int(hist[h] / maxV * 256)
    cv2.line(histImg, (h, 256), (h, 256 - interNormal), color)
  cv2.imshow(windowName, histImg)
  return histImg
img = cv2.imread('img.jpg', 1)
channels = cv2.split(img) # R-G-B
for i in range(3):
  ImageHist(channels[i], 1 + i)
cv2.waitKey(0)

2.直方图均衡化

灰色图像直方图均衡化

这里我们直接使用cv2.equalizeHist方法来得到直方图均衡化之后的图像

import cv2
import numpy as np
img = cv2.imread('img.jpg', 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dat = cv2.equalizeHist(gray)
cv2.imshow('gray', gray)a
cv2.imshow('dat', dat)
cv2.waitKey(0)

原图像:

直方图均衡化后的图像:

彩色图像直方图均衡化

彩色图像有3个通道,直方图是针对单通道上的像素统计,所以使用cv2.split方法分离图像的颜色通道,分别得到各个通道的直方图,最后使用cv2.merge()方法合并直方图,得到彩色图像的直方图均衡化

import cv2
import numpy as np
img = cv2.imread('img.jpg', 1)
cv2.imshow('img', img)
(b, g, r) = cv2.split(img)
bH = cv2.equalizeHist(b)
gH = cv2.equalizeHist(g)
rH = cv2.equalizeHist(r)
dat = cv2.merge((bH, gH, rH))
cv2.imshow('dat', dat)
cv2.waitKey(0)

D:\Anaconda\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs:
D:\Anaconda\lib\site-packages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBKM4EVBGM7.gfortran-win_amd64.dll
D:\Anaconda\lib\site-packages\numpy\.libs\libopenblas.PYQHXLVVQ7VESDPUVUADXEVJOBGHJPAY.gfortran-win_amd64.dll
stacklevel=1)

原图像:

直方图均衡化之后的图像:

3.源代码实现直方图均衡化

下面我们用源代码来实现直方图

横坐标为像素等级,纵坐标为出现的概率

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('img.jpg', 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
count = np.zeros(256, np.float)
for i in range(img.shape[0]):
  for j in range(img.shape[1]):
    count[int(gray[i, j])] += 1 # 统计该像素出现的次数
count = count / (img.shape[0] * img.shape[1]) # 得到概率
x = np.linspace(0,255,256)
plt.bar(x, count,color = 'b')
plt.show()

# 计算累计概率

for i in range(1,256):
  count[i] += count[i - 1]
# 映射
map1 = count * 255
for i in range(img.shape[0]):
  for j in range(img.shape[1]):
    p = gray[i, j]
    gray[i, j] = map1[p]
cv2.imshow('gray', gray)
cv2.waitKey(0)

直方图:

直方图均衡化后的图像:

彩色直方图源码

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('img.jpg', 1)
# R-G-B三种染色直方图
countb = np.zeros(256, np.float32)
countg = np.zeros(256, np.float32)
countr = np.zeros(256, np.float32)

for i in range(img.shape[0]):
  for j in range(img.shape[1]):
    (b,g,r) = img[i,j]
    b = int(b)
    g = int(g)
    r = int(r)
    countb[b] += 1 # 统计该像素出现的次数
    countg[g] += 1
    countr[r] += 1
countb = countb / (img.shape[0] * img.shape[1]) # 得到概率
countg = countg / (img.shape[0] * img.shape[1])
countr = countr / (img.shape[0] * img.shape[1])
x = np.linspace(0,255,256)
plt.figure()
plt.bar(x, countb,color = 'b')
plt.figure()
plt.bar(x, countg,color = 'g')
plt.figure()
plt.bar(x, countr,color = 'r')
plt.show()

# 计算直方图累计概率
for i in range(1,256):
  countb[i] += countb[i - 1]
  countg[i] += countg[i - 1]
  countr[i] += countr[i - 1]
#映射表
mapb = countb * 255
mapg = countg * 255
mapr = countr * 255

dat = np.zeros(img.shape, np.uint8)
for i in range(img.shape[0]):
  for j in range(img.shape[1]):
    (b,g,r) = img[i, j]
    dat[i, j] = (mapb[b],mapg[g],mapr[r])
cv2.imshow('dat', dat)
cv2.waitKey(0)

R-G-B 3 种颜色通道的直方图如下:

图像均衡化之后的结果:

到此这篇关于OpenCV利用python来实现图像的直方图均衡化的文章就介绍到这了,更多相关OpenCV 直方图均衡化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解python OpenCV学习笔记之直方图均衡化

    本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_histogram_equalization.html 考虑一个图像,其像素值仅限制在特定的值范围内.例如,更明亮的图像将使所有像素都限制在高值中.但是一个好的图像会有来自图像的所有区域的像素.所以你需要把这个直方图拉伸到两端(如下图所给出的),这就是直方图均衡的作用(用简单的话说).这通常会改善图像的

  • OpenCV利用python来实现图像的直方图均衡化

    1.直方图 直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值. 我们使用cv2.calcHist方法得到直方图 cv2.calcHist(images, channels, mask, histSize, ranges): -img: 图像 -channels: 选取图像的哪个通道 -histSize: 直方图大小 -ranges: 直方图范围 cv2.minMaxLoc: 返回直方图的最大最小值,以及他们的索引 import cv2 impo

  • 利用Python裁切tiff图像且读取tiff,shp文件的实例

    我就废话不多说了,还是直接看代码吧! from osgeo import gdal, gdalnumeric, ogr from PIL import Image, ImageDraw from osgeo import gdal_array import os import operator from functools import reduce gdal.UseExceptions() def readTif(fileName): dataset = gdal.Open(fileName)

  • Java OpenCV利用KNN算法实现图像背景移除

    目录 实现步骤 示例代码 结果图 实现步骤 1 获取视频 2 设置形态学结构 3 创建 Video.createBackgroundSubtractorKNN() 4 提取模型 BS 5 进行形态学变换 6 膨胀 7 二值化 8 展示结果 示例代码 package com.xu.opencv; import java.util.ArrayList; import java.util.List; import java.util.Objects; import java.util.Optional

  • OpenCV 直方图均衡化的实现原理解析

    目录 直方图均衡化介绍 图像的直方图是什么? 更形象解释 什么是直方图均衡化? 直方图均衡化是如何实现的? 直方图均衡化的作用 直方图均衡化步骤 相关API equalizeHist 代码示例 灰度图均值化 彩色图均值化 直方图均衡化介绍 图像的直方图是什么? 图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图.直方图反映了图像灰度的分布情况.是图像的统计学特征. 简单来说:直方图是图像中像素强度分布的图形表达方式,它统计了每

  • Python学习之直方图均衡化原理详解

    目录 1.点算子 2.线性灰度变换 3.直方图均衡化 4.代码实战 1.点算子 点算子是两个像素灰度值间的映射关系,属于像素的逐点运算,相邻像素不参与运算.点算子是最简单的图像处理手段,如:亮度调整.对比度调整.颜色变换.直方图均衡化等等. 2.线性灰度变换 线性灰度变换表达为: 其中rk.sk分别为输入.输出点像素灰度值. ▲图2.1 线性灰度变换 当a>1时,输出图像像素灰度范围扩大,图像对比度增强,当a<1时反之.这是因为人眼不易区分相近的灰度值,因此若图像灰度值范围较小,观感上细节不够

  • python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)

    一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较 img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #循环要检测的图,均灰度化 for i in range(1, 6): t1=cv2.cvtColor(cv2.imread

  • 利用Python和OpenCV库将URL转换为OpenCV格式的方法

    今天的博客是直接来源于我自己的个人工具函数库. 过去几个月,有些PyImageSearch读者电邮问我:"如何获取URL指向的图片并将其转换成OpenCV格式(不用将其写入磁盘再读回)".这篇文章我将展示一下怎么实现这个功能. 额外的,我们也会看到如何利用scikit-image从URL下载一幅图像.当然前行之路也会有一个常见的错误,它可能让你跌个跟头. 继续往下阅读,学习如何利用利用Python和OpenCV将URL转换为图像 方法1:OpenCV.NumPy.urllib 第一个方

  • python+openCV利用摄像头实现人员活动检测

    本文实例为大家分享了python+openCV利用摄像头实现人员活动检测的具体代码,供大家参考,具体内容如下 1.前言 最近在做个机器人比赛,其中一项要求是让机器人实现对是否有人员活动的检测,所以就先拿PC端写一下,准备移植到机器人的树莓派. 2.工具 工具还是简单的python+视觉模块openCV,代码量也比较少.很简单就可以实现 3.人员检测的原理   从图书馆借了一本<特征提取与图像处理(第二版)>,是Mark S.Nixon和Alberto S.Aguado写的,其中讲了跟多关于检测

  • 利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统

    基于python opencv人脸识别的签到系统前言先看下效果实现的功能开始准备页面的构建功能实现代码部分总结 前言 一个基于opencv人脸识别和TensorFlow进行模型训练的人脸实时签到系统,作者某二本大学里的末流学生,写于2019/09/,python学习期间. 今年7月份开始接触python的,最近闲着无事就开始做了这个人脸识别的系统,一开始的话就想着简单的弄下,就去了百度智能云用的api接口实现的,写完以后我就想为什么我不自己写一个人脸识别签到,不去调用百度api接口,然后就诞生了

随机推荐