详解python logging日志传输

1.生成日志并通过http传输出去(通过HTTPHandler方式):

#生成并发送日志
import logging
from logging.handlers import HTTPHandler
import logging.config

def save():
  logger = logging.getLogger(__name__)
  # 生成一个log实例,如果括号为空则返回root logger
  hh = HTTPHandler(host='127.0.0.1:5000', url='/log', method='POST')
  #用HTTPHandler直接发送日志,而并不是写文件再传文件。
  logger.setLevel(logging.INFO)
  #设置日志最低输出级别为info
  logger.addHandler(hh)
  #添加Handler对象给记录器(为logger添加的日志处理器,可以自定义日志处理器让其输出到其他地方)
  logger.info('存入600元') # 输出日志,内容为‘存入600元'
save()

2.用flask接收传过来的日志:

#flask接收日志
from flask import Flask,request
app = Flask(__name__)

@app.route('/log',methods=['POST'])
def say_hello():
  #查看传过来的数据格式:
  print(request.mimetype)
  #HTTPHandler传过来的是个form表单
  print(request.form.to_dict())
  return '<h1>Hello, Flask!</h1>'

if __name__ == '__main__':
  app.run()

输出:
#这是传过来的数据格式,是个form表单
application/x-www-form-urlencoded 

#这是form.to_dict解析出来的内容(直接解析成了字典)
{'name': '__main__', 'msg': '存入600元', 'args': '()', 'levelname': 'INFO', 'levelno': '20', 'pathname': 'C:/Users/huawei/Desktop/code/log/send_log.py',
'filename': 'send_log.py', 'module': 'send_log', 'exc_info': 'None', 'exc_text': 'None', 'stack_info': 'None', 'lineno': '15',
'funcName': 'save', 'created': '1593581146.172768', 'msecs': '172.76811599731445', 'relativeCreated': '176.5270233154297',
 'thread': '13904', 'threadName': 'MainThread', 'processName': 'MainProcess', 'process': '3656'}

3.logging模块介绍

Python的logging模块提供了通用的日志系统,熟练使用logging模块可以方便开发者开发第三方模块或者是自己的Python应用。同样这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP、GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式。下文我将主要介绍如何使用文件方式记录log。

1.基本概念:

logging模块包括logger,handler,filter,formatter这四个基本概念。

logging模块与log4j的机制是一样的,只是具体的实现细节不同。模块提供logger,handler,filter,formatter。

  • logger:提供日志接口,供应用代码使用。logger最长用的操作有两类:配置和发送日志消息。可以通过logging.getLogger(name)获取logger对象,如果不指定name则返回root对象,多次使用相同的name调用getLogger方法返回同一个logger对象。
  • handler:将日志记录(log record)发送到合适的目的地(destination),比如文件,socket等。一个logger对象可以通过addHandler方法添加0到多个handler,每个handler又可以定义不同日志级别,以实现日志分级过滤显示。
  • filter:提供一种优雅的方式决定一个日志记录是否发送到handler。
  • formatter:指定日志记录输出的具体格式。formatter的构造方法需要两个参数:消息的格式字符串和日期字符串,这两个参数都是可选的。

与log4j类似,logger,handler和日志消息的调用可以有具体的日志级别(Level),只有在日志消息的级别大于logger和handler的级别。

import logging
logging.basicConfig(level=logging.DEBUG,
  format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
  datefmt='%a, %d %b %Y %H:%M:%S',
  filename='myapp.log',
  filemode='w')
#################################################################################################
#定义一个StreamHandler,将INFO级别或更高的日志信息打印到标准错误,并将其添加到当前的日志处理对象#
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
#################################################################################################
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')

屏幕上打印:
root : INFO This is info message
root : WARNING This is warning message
./myapp.log文件中内容为:
Sun, 24 May 2009 21:48:54 demo2.py[line:11] DEBUG This is debug message
Sun, 24 May 2009 21:48:54 demo2.py[line:12] INFO This is info message
Sun, 24 May 2009 21:48:54 demo2.py[line:13] WARNING This is warning message

2.主要用法:

logging.StreamHandler: 日志输出到流,可以是sys.stderr、sys.stdout或者文件

logging.FileHandler: 日志输出到文件

日志回滚方式,实际使用时用RotatingFileHandler和TimedRotatingFileHandler

logging.handlers.BaseRotatingHandler

logging.handlers.RotatingFileHandler

logging.handlers.TimedRotatingFileHandler

logging.handlers.SocketHandler: 远程输出日志到TCP/IP sockets

logging.handlers.DatagramHandler: 远程输出日志到UDP sockets

logging.handlers.SMTPHandler: 远程输出日志到邮件地址

logging.handlers.SysLogHandler: 日志输出到syslog

logging.handlers.NTEventLogHandler: 远程输出日志到Windows NT/2000/XP的事件日志

logging.handlers.MemoryHandler: 日志输出到内存中的制定buffer

logging.handlers.HTTPHandler: 通过"GET"或"POST"远程输出到HTTP服务器

举例:

import logging
import sys
# 获取logger实例,如果参数为空则返回root logger
logger = logging.getLogger("AppName")
# 指定logger输出格式
formatter = logging.Formatter('%(asctime)s %(levelname)-8s: %(message)s')
# 文件日志
file_handler = logging.FileHandler("test.log")
file_handler.setFormatter(formatter) # 可以通过setFormatter指定输出格式
# 控制台日志
console_handler = logging.StreamHandler(sys.stdout)
console_handler.formatter = formatter # 也可以直接给formatter赋值
# 为logger添加的日志处理器,可以自定义日志处理器让其输出到其他地方
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# 指定日志的最低输出级别,默认为WARN级别
logger.setLevel(logging.INFO)
# 输出不同级别的log
logger.debug('this is debug info')
logger.info('this is information')
logger.warn('this is warning message')
logger.error('this is error message')
logger.fatal('this is fatal message, it is same as logger.critical')
logger.critical('this is critical message')
# 2016-10-08 21:59:19,493 INFO : this is information
# 2016-10-08 21:59:19,493 WARNING : this is warning message
# 2016-10-08 21:59:19,493 ERROR : this is error message
# 2016-10-08 21:59:19,493 CRITICAL: this is fatal message, it is same as logger.critical
# 2016-10-08 21:59:19,493 CRITICAL: this is critical message
# 移除一些日志处理器
logger.removeHandler(file_handler)

4.概述:

python的logging模块(logging是线程安全的)给应用程序提供了标准的日志信息输出接口。logging不仅支持把日志输出到文件,还支持把日志输出到TCP/UDP服务器,EMAIL服务器,HTTP服务器,UNIX的syslog系统等。在logging中主要有四个概念:logger、handler、filter和formatter,下面会分别介绍。

1.logger

Logger对象扮演了三重角色:

它给应用程序暴漏了几个方法,以便应用程序能在运行时记录日志。

Logger对象根据日志的级别或根据Filter对象,来决定记录哪些日志。

Logger对象负责把日志信息传递给相关的handler。

在Logger对象中,最常使用的方法分为两类:configuration,message sending。 configuration方法包括:

setLevel(level)

setLevel(level)方法用来设置logger的日志级别,如果日志的级别低于setLevel(level)方法设置的值,那么logger不会处理它。

logging模块内建的日志级别有:

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0 (数值越大级别越高)
addFilter(filter)
removeFilter(filter)
addHandler(handler)
removeHandler(handler)

message sending方法包括:

debug(log_message, [*args[, **kwargs]])

使用DEBUG级别,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
info(log_message, [*args[, **kwargs]])

使用INFO级别,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
warning(log_message, [*args[, **kwargs]])

使用WARNING级别,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
error(log_message, [*args[, **kwargs]])

使用Error级别,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.error("Houston, we have a %s", "major problem", exc_info=1)
critical(log_message, [*args[, **kwargs]])

使用CRITICAL级别,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
exception(message[, *args])
self.error(*((msg,) + args), **{'exc_info': 1})
log(log_level, log_message, [*args[, **kwargs]])

使用整型的级别level,记录log_message % args。

为了记录异常信息,需要将关键字参数exc_info设置为一个true值。

logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
logging.getLogger([name])

方法返回一个Logger实例的引用,如果提供了name参数,那么它就是这个Logger实例的名称,如果没提供name参数,那么这个Logger实例的名称是root。

可以通过Logger实例的name属性,来查看Logger实例的名称。

Logger实例的名称是使用句号(.)分隔的多级结构。

在这种命名方式中,后面的logger是前面的logger的子(父子logger只是简单的通过命名来识别),比如:有一个名称为foo的logger,那么诸如foo.bar、foo.bar.baz和foo.bam这样的logger都是foo这个logger的子logger。

子logger会自动继承父logger的定义和配置。

使用相同的名称多次调用logging.getLogger([name])方法,会返回同一个logger对象的引用。

这个规则不仅仅在同一个module有效,而且对在同一个Python解释器进程的多个module也有效。

因此应用程序可以在一个module中定义一个父logger,然后在其他module中继承这个logger,而不必把所有的logger都配置一遍

2.handler

handler实例负责把日志事件分发到具体的目的地。logger对象可以使用addHandler()方法,添加零个或多个handler对象到它自身。一个常见的场景是:应用程序可能希望把所有的日志都记录到一个log文件,所有的ERROR及以上级别的日志都记录到stdout,所有的CRITICAL级别的日志都发送到一个email地址。这个场景需要三个独立的handler,每个handler负责把特定级别的日志发送到特定的地方。

下面是logging模块内置的handler:StreamHandler
FileHandler
RotatingFileHandler
TimedRotatingFileHandler
SocketHandler
DatagramHandler
SysLogHandler
NTEventLogHandler
SMTPHandler
MemoryHandler
HTTPHandler

内置的handler提供了下面的配置方法:

  • setLevel(level)
  • handler对象的setLevel()方法,与logger对象的setLevel()方法一样,也是用于设置一个日志级别,如果日志的级别低于setLevel()方法设置的值,那么handler不会处理它。
  • setFormatter(formatter)
  • addFilter(filter)
  • removeFilter(filter)

应用程序代码不应该直接实例化和使用handler。logging.Handler是一个定义了所有的handler都应该实现的接口和建立了子类能够使用(或重写)的一些默认行为的基类。

自定义Handler 自定义的handler必须继承自logging.Handler,且实现下面的方法:

class Handler(Filterer):
 def emit(self, record):
 """
 Do whatever it takes to actually log the specified logging record.
 This version is intended to be implemented by subclasses and so
 raises a NotImplementedError.
 """
 raise NotImplementedError, 'emit must be implemented '\
     'by Handler subclasses'
 def flush(self):
 """
 Ensure all logging output has been flushed.
 This version does nothing and is intended to be implemented by
 subclasses.
 """
 pass
 def close(self):
 """
 Tidy up any resources used by the handler.
 This version does removes the handler from an internal list
 of handlers which is closed when shutdown() is called. Subclasses
 should ensure that this gets called from overridden close()
 methods.
 """
 #get the module data lock, as we're updating a shared structure.
 _acquireLock()
 try: #unlikely to raise an exception, but you never know...
  if self in _handlers:
  del _handlers[self]
  if self in _handlerList:
  _handlerList.remove(self)
 finally:
  _releaseLock()

其中,emit(record)方法负责执行真正地记录日志所需的一切事情,在logging.Handler的子类中必须实现这个方法。close()方法负责清理handler所使用的资源(在Python解释器退出的时候,会调用所有的handler的flush()和close()方法),logging.Handler的子类应该确保在重写close()方法的时候,调用父类的该方法。

下面分析logging.StreamHandler的源代码:

class StreamHandler(Handler):
 def __init__(self, strm=None):
 Handler.__init__(self)
 if strm is None:
  strm = sys.stderr
 self.stream = strm
 def flush(self):
 if self.stream and hasattr(self.stream, "flush"):
  self.stream.flush()
 def emit(self, record):
 try:
  msg = self.format(record)
  stream = self.stream
  fs = "%s\n"
  if not hasattr(types, "UnicodeType"): #if no unicode support...
  stream.write(fs % msg)
  else:
  try:
   if (isinstance(msg, unicode) and
   getattr(stream, 'encoding', None)):
   fs = fs.decode(stream.encoding)
   try:
    stream.write(fs % msg)
   except UnicodeEncodeError:
    #Printing to terminals sometimes fails. For example,
    #with an encoding of 'cp1251', the above write will
    #work if written to a stream opened or wrapped by
    #the codecs module, but fail when writing to a
    #terminal even when the codepage is set to cp1251.
    #An extra encoding step seems to be needed.
    stream.write((fs % msg).encode(stream.encoding))
   else:
   stream.write(fs % msg)
  except UnicodeError:
   stream.write(fs % msg.encode("UTF-8"))
  self.flush()
 except (KeyboardInterrupt, SystemExit):
  raise
 except:
  self.handleError(record)

在构造函数中,如果提供了strm参数,那么它就是要输出到的流,如果没提供,那么就会将日志输出到标准错误输出流sys.stderr。

  • flush()方法的作用是:刷新self.stream内部的I/O缓冲区。每次emit日志之后都会调用这个方法,将日志从I/O缓冲区sync到self.stream。
  • emit(record)方法的作用是:将LogRecord对象(record)记录到self.stream。emit(record)方法首先调用基类logging.Handler提供的format(record)方法,该方法会根据设置的Formatter对象来格式化record对象,得到要记录的字符串msg。然后对fs(fs其实就是在msg的尾部增加一个换行'\n')进行一系列的编码解码,将它写入到self.stream。最后再刷新self.stream。在emit(record)调用期间发生的异常,应该调用logging.Handler提供的handleError(record)方法来处理。

3.filter

Filter对象用于对LogRecord对象执行过滤,logger和handler都可以使用filter来过滤record。下面用一个列子来说明Filter基类的作用:

如果使用A.B实例化一个filter,那么它允许名称为A.B,A.B.C,A.B.C.D这样的logger记录的日志通过,不允许名称为A.BB,B.A.B这样的logger记录的日志通过。

如果使用空字符串实例化一个filter,那么它允许所有的事件通过。

Filter基类有一个方法叫filter(record),它用来决定指定的record(LogRecord对象)是否被记录。如果该方法返回0,则不记录record;返回非0则记录record。

Filterer(注意:不是Filter)是logger和handler的基类。它提供了方法来添加和删除filter,并且提供了filter(record)方法用于过滤record,该方法默认允许record被记录,但是任何filter都可以否决这个默认行为,如果想要丢弃record,filter(record)方法应该返回0,否则应该返回非0。

4.formatter

Formatter对象用于把一个LogRecord对象转换成文本,它定义了日志的格式、结构。与logging.Handler类不同,应用程序可以直接实例化Formatter类,如果需要也可以子类化Formatter,以便定

制一些行为。

Formatter的构造函数接受两个参数:第一个参数是用于日志信息的格式化字符串;第二个参数是用于日期的格式化字符串。第二个参数可选的,默认值是%Y-%m-%d %H:%M:%S。

日志信息的格式化字符串用%(<dictionary key>)s风格的字符串做替换。

下面是替换字符串和它们所代表的含义:

%(name)s
logger的名称
%(levelno)s
日志级别的数字表现形式
%(levelname)s
日志级别的文本表现形式
%(pathname)s
调用logging的源文件的全路径名
%(filename)s
pathname的文件名部分
%(module)s
模块名(filename的名称部分)
%(lineno)d
调用logging的行号
%(funcName)s
函数名
%(created)f
LogRecord的创建时间(time.time()的返回值)
%(asctime)s
LogRecord的创建时间的文本表现形式
%(msecs)d
创建时间的毫秒部分
%(relativeCreated)d
LogRecord的创建时间,单位是毫秒。这个时间是相对logging模块被加载的时间的(通常就是应用程序启动的时间)。
%(thread)d
线程ID
%(threadName)s
线程名称
%(process)d
进程ID
%(message)s
record.getMessage()的返回结果。

举例:

配置logging

下面是一个简单的例子,它会向标准输出打印日志:

import logging
import sys
logger = logging.getLogger(__name__)
filter = logging.Filter(__name__)
formatter = logging.Formatter("%(asctime)s|%(name)-12s|%(message)s", "%F %T")
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.addFilter(filter)
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger.setLevel(logging.DEBUG)
logger.addFilter(filter)
logger.addHandler(stream_handler)
if __name__ == "__main__":
 logger.info("info")

运行这个脚本,输出结果是:

2015-12-16 13:52:17|__main__ |info

使用配置文件,配置logging

下面是一个使用配置文件,配置logging的例子:

import logging
import logging.config
logging.config.fileConfig("logging.conf")
if __name__ == "__main__":
 logger = logging.getLogger("test_logging.sublogger")
 logger.info("info")

logging.conf如下:

[loggers]
keys = root,logger
[handlers]
keys = stream_handler
[formatters]
keys = formatter
[logger_root]
handlers = stream_handler
[logger_logger]
handlers = stream_handler
level = DEBUG
propagate = 1
qualname = test_logging
[handler_stream_handler]
class = StreamHandler
args = (sys.stdout,)
formatter = formatter
level = DEBUG
[formatter_formatter]
format = %(asctime)s|%(name)-12s|%(message)s
datefmt = %F %T

需要解释的地方有两处:第一个是logger_xxxsection中的propagate选项,在logger对象把record传递给所有相关的handler的时候,会(逐级向上)寻找这个logger和它所有的父logger的全部handler。在寻找过程中,如果logger对象的propagate属性被设置为1,那么就继续向上寻找;如果某个logger的propagate属性被设置为0,那么就会停止搜寻。

第二个是logger_xxxsection中的qualname选项,它其实就是logger的名称。

使用配置文件的时候,必须定义root logger。

最酷的listen(port)函数

logging.config.listen(port)函数可以让应用程序在一个socket上监听新的配置信息,达到在运行时改变配置,而不用重启应用程序的目的。

监听程序:

import logging.config
import logging
import time
logging.config.fileConfig("logging.conf")
logger = logging.getLogger("test_logging.listen")
t = logging.config.listen(9999)
t.setDaemon(True)
t.start()
try:
 while True:
 logger.info('running.')
 time.sleep(3)
except (KeyboardInterrupt, SystemExit, Exception):
 logging.config.stopListening()

发送新的配置信息程序:

import socket
import struct
HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
print "connected..."
data_to_send = open("logging.conf").read()
s.send(struct.pack(">L", len(data_to_send)))
s.send(data_to_send)
print "closing..."
s.close()

以上就是详解python logging日志传输的详细内容,更多关于python logging日志传输的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python logging日志模块 配置文件方式

    在一些微服务或web服务中我们难免需要日志功能,用来记录一些用户的登录记录,操作记录,以及一些程序的崩溃定位,执行访问定位等等; Python内置 非常强大的日志模块 ==> logging 今天给大家分享一下以配置文件形式进行配置log日志 ; Centos6.7 Python3.6 logging0.5.1.2 logging模块有三个比较重要的功能组件: 1.loggers 配置文件可定义一些输出日志的appname 2.handler 过滤器,比如设置日志的分隔大小,输出位置,日志文件创

  • Python日志logging模块功能与用法详解

    本文实例讲述了Python日志logging模块功能与用法.分享给大家供大家参考,具体如下: 本文内容: logging模块的介绍 logging模块的基础使用 logging模块的扩展使用 logging中的Filter 使用配置文件配置logging和logger 小技巧 想要了解更多?不如看看官方文档. 首发日期:2018-07-05 logging模块的介绍: 它是一个python标准库,所以它的通用性很高,所有的python模块都可以与它合作参与日志记录. 日志级别: 基本 中文意义

  • 解决Python logging模块无法正常输出日志的问题

    废话少说,先上代码 File:logger.conf [formatters] keys=default [formatter_default] format=%(asctime)s - %(name)s - %(levelname)s - %(message)s class=logging.Formatter [handlers] keys=console, error_file [handler_console] class=logging.StreamHandler formatter=d

  • 详解python中的Turtle函数库

    python对函数库的引用方式 1.import <库名> 例如:import turtle 如果需要使用库函数中的函数,需要使用:<库名>.<函数名> 例如: import turtle turtle.fd(100) 2.from <库名> import <函数名> from <库名> import  *, 使用这种方式时,直接使用<函数名> 例如:  >>>from turtle import *  

  • Python如何给函数库增加日志功能

    问题 你想给某个函数库增加日志功能,但是又不能影响到那些不使用日志功能的程序. 解决方案 对于想要执行日志操作的函数库而已,你应该创建一个专属的 logger 对象,并且像下面这样初始化配置: # somelib.py import logging log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) # Example function (for testing) def func(): log.crit

  • Python随机函数库random的使用方法详解

    前言 众所周知,python拥有丰富的内置库,还支持众多的第三方库,被称为胶水语言,随机函数库random,就是python自带的标准库,他的用法极为广泛,除了生成比较简单的随机数外,还有很多功能.使用random库: import random random库主要函数: 函数名 说明 用法 random() 生成一个0~1之间的随机浮点数,范围 0 <= n < 1.0 random.random() uniform(a,b) 返回a, b之间的随机浮点数,范围[a, b]或[a, b),

  • python统计函数库scipy.stats的用法解析

    背景 总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例. 正态分布 以正态分布的常见需求为例了解scipy.stats的基本使用方法. 1.生成服从指定分布的随机数 norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差.size得到随机数数组的形状参数.(也可以使用np.random.normal(loc=0.0, scale=1.0, size=None)) In [4]: import numpy a

  • python3中的logging记录日志实现过程及封装成类的操作

    作用: 主要记录信息,便于定位查看问题. python logging模块官网: https://docs.python.org/zh-cn/3.7/library/logging.html#formatter-objects 三种定位问题方法: print debug调试:代码写好后,就不需要再进行调试了,所以引入了logger logging.debug() – 一般在测试环境中用 logger:当生产环境中有问题时,可以查看logger定位问题 步骤: 1.初始化日志 收集器 2.设置日志

  • 使用Python将Exception异常错误堆栈信息写入日志文件

    假设需要把发生异常错误的信息写入到log.txt日志文件中去: import traceback import logging logging.basicConfig(filename='log.txt', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') try: raise Exception('发生异常错误信息') except: #方案一,自己定义一个文件,自己把错误堆栈信息写入文件. #er

  • python实时监控logstash日志代码

    实时读取logstash日志,有异常错误keywork即触发报警. # /usr/bin/env python3 # -*- coding: utf-8 -*- # __author__ = caozhi # create_time 2018-11-12,update_time 2018-11-15 # version = 1.0 # 录像高可用报警 # 1 读取日志 使用游标移动 # 2 线上业务日志文件会切割,切割后,读取上一个切割的日志 import os import sys impor

随机推荐