TensorFlow实现checkpoint文件转换为pb文件

由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件。

import os
from tensorflow.python import pywrap_tensorflow
from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可
import tensorflow as tf
if __name__=='__main__':
  pb_file = "./model/output.pb"
  ckpt_file = "./model/model.ckpt-652900"
  '''
这里的节点名字可能跟设想的有出入,最直接的方法是直接输出ckpt中保存的节点名字,然后对应着找节点名字,具体的进入convert_variables_to_constants函数的实现中graph_util_impl.py,130行的函数:_assert_nodes_are_present 添加代码
  print('在图中的节点是:')
  for din in name_to_node:
    print('{},在图中'.format(din))
然后运行代码,若正确就会直接保存;若失败则会保存失败,找好输出节点的名字,在output_node_names 中添加就好
'''
  output_node_names = ["embedding"]

  with tf.name_scope('input'):
    image = tf.placeholder(tf.float32,shape=(None,79,199,1),name='input_image')

  net, endpoints=inception_resnet_v2_small(image, is_training=False)
  embedding = tf.nn.l2_normalize(net,1,1e-10,name='embedding')

  config=tf.ConfigProto(allow_soft_placement=True)
  config.gpu_options.per_process_gpu_memory_fraction = 0.45
  sess = tf.Session(config = config)
  saver = tf.train.Saver()
  saver.restore(sess, ckpt_file)
  print('read success')
  converted_graph_def = tf.graph_util.convert_variables_to_constants(sess,
                input_graph_def = sess.graph.as_graph_def(),
                output_node_names = output_node_names)

  with tf.gfile.GFile(pb_file, "wb") as f:
    f.write(converted_graph_def.SerializeToString())

  print('保存成功')

以上这篇TensorFlow实现checkpoint文件转换为pb文件就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow实现训练变量checkpoint的保存与读取

    1.保存变量 先创建(在tf.Session()之前)saver saver = tf.train.Saver(tf.global_variables(),max_to_keep=1) #max_to_keep这个保证只保存最后一次training的训练数据 然后在训练的循环里面 checkpoint_path = os.path.join(Path, 'model.ckpt') saver.save(session, checkpoint_path, global_step=step) #这里

  • TensorFlow实现从txt文件读取数据

    TensorFlow从txt文件中读取数据的方法很多有种,我比较常用的是下面两种: [1]np.loadtxt import numpy as np data=np.loadtxt('ex1data1.txt',dtype='float',delimiter=',') X_train=data[:,0] y_train=data[:,1] [2]pd.read_csv import pandas as pd data=pd.read_csv("ex2data2.txt",names=[

  • TensorFlow实现保存训练模型为pd文件并恢复

    TensorFlow保存模型代码 import tensorflow as tf from tensorflow.python.framework import graph_util var1 = tf.Variable(1.0, dtype=tf.float32, name='v1') var2 = tf.Variable(2.0, dtype=tf.float32, name='v2') var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')

  • tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader

    使用tf.trian.NewCheckpointReader(model_dir) 一个标准的模型文件有一下文件, model_dir就是MyModel(没有后缀) checkpoint Model.meta Model.data-00000-of-00001 Model.index import tensorflow as tf import pprint # 使用pprint 提高打印的可读性 NewCheck =tf.train.NewCheckpointReader("model&quo

  • TensorFlow实现checkpoint文件转换为pb文件

    由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件. import os from tensorflow.python import pywrap_tensorflow from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可 import tensorflow as tf if __name__=='__main__': pb_file = "./model/output.pb" ckpt_

  • tensorflow实现将ckpt转pb文件的方法

    本博客实现将自己训练保存的ckpt模型转换为pb文件,该方法适用于任何ckpt模型,当然你需要确定ckpt模型输入/输出的节点名称. 使用 tf.train.saver()保存模型时会产生多个文件,会把计算图的结构和图上参数取值分成了不同的文件存储.这种方法是在TensorFlow中是最常用的保存方式. 例如:下面的代码运行后,会在save目录下保存了四个文件: import tensorflow as tf # 声明两个变量 v1 = tf.Variable(tf.random_normal(

  • tensorflow从ckpt和从.pb文件读取变量的值方式

    最近在学习tensorflow自带的量化工具的相关知识,其中遇到的一个问题是从tensorflow保存好的ckpt文件或者是保存后的.pb文件(这里的pb是把权重和模型保存在一起的pb文件)读取权重,查看量化后的权重是否变成整形. 因此将自己解决这个问题记录下来,为了下一次遇到时,可以有所参考,也希望给有需要的同学一个可能的参考. (1) 从保存的ckpt读取变量的值(以读取保存的第一个权重为例) from tensorflow.python import pywrap_tensorflow i

  • 将tensorflow模型打包成PB文件及PB文件读取方式

    1. tensorflow模型文件打包成PB文件 import tensorflow as tf from tensorflow.python.tools import freeze_graph with tf.Graph().as_default(): with tf.device("/cpu:0"): config = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=config).as_defaul

  • php使用Image Magick将PDF文件转换为JPG文件的方法

    本文实例讲述了php使用Image Magick将PDF文件转换为JPG文件的方法.分享给大家供大家参考.具体如下: 这是一个非常简单的格式转换代码,可以把.PDF文件转换为.JPG文件,代码要起作用,服务器必须要安装Image Magick 扩展. $pdf_file = './pdf/demo.pdf'; $save_to = './jpg/demo.jpg'; //make sure that apache has permissions to write in this folder!

  • reg2vbs.vbs 将Reg文件转换为VBS文件保存 脚本之家修正版本

    复制代码 代码如下: '***************************************************************************** ' FileName: Reg2Vbs.VBS ' Author: baomaboy ' Abstract: 将Reg文件转换为VBS文件保存 '***************************************************************************** Dim WshSh

  • python批量实现Word文件转换为PDF文件

    本文为大家分享了python批量转换Word文件为PDF文件的具体方法,供大家参考,具体内容如下 1.目的 通过万能的Python把一个目录下的所有Word文件转换为PDF文件. 2.遍历目录 作者总结了三种遍历目录的方法,分别如下. 2.1.调用glob 遍历指定目录下的所有文件和文件夹,不递归遍历,需要手动完成递归遍历功能. import glob as gb path = gb.glob('d:\\2\\*') for path in path: print path 2.2.调用os.w

  • 利用pyuic5将ui文件转换为py文件的方法

    操作系统上正确配置python环境之后,pyuic5也是一个可以识别的命令行指令 到.ui文件的目录下,直接cmd进入,输入pyuic5 -o 转换的py文件 待转换的ui文件 此时,需要对login.py添加一点代码使得设计好的UI能够出现在我们面前 import sys if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) # 创建一个QApplication,也就是你要开发的软件app MainWind

  • python利用pandas将excel文件转换为txt文件的方法

    python将数据换为txt的方法有很多,可以用xlrd库实现.本人比较懒,不想按太多用的少的插件,利用已有库pandas将excel文件转换为txt文件. 直接上代码: ''' function:将excel文件转换为text author:Nstock date:2018/3/1 ''' import pandas as pd import re import codecs #将excel转化为txt文件 def exceltotxt(excel_dir, txt_dir): with co

  • python实现npy格式文件转换为txt文件操作

    如下代码会将npy的格式数据读出,并且输出来到控制台: import numpy as np ##设置全部数据,不输出省略号 import sys np.set_printoptions(threshold=sys.maxsize) boxes=np.load('./input_output/boxes.npy') print(boxes) np.savetxt('./input_output/boxes.txt',boxes,fmt='%s',newline='\n') print('----

随机推荐