tensorflow模型继续训练 fineturn实例

解决tensoflow如何在已训练模型上继续训练fineturn的问题。

训练代码

任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解。

# -*- coding: utf-8 -*-)
import tensorflow as tf

# 声明占位变量x、y
x = tf.placeholder("float", shape=[None, 1])
y = tf.placeholder("float", [None, 1])

# 声明变量
W = tf.Variable(tf.zeros([1, 1]),name='w')
b = tf.Variable(tf.zeros([1]),name='b')

# 操作
result = tf.matmul(x, W) + b

# 损失函数
lost = tf.reduce_sum(tf.pow((result - y), 2))

# 优化
train_step = tf.train.GradientDescentOptimizer(0.0007).minimize(lost)

with tf.Session() as sess:
  # 初始化变量
  sess.run(tf.global_variables_initializer())
  saver = tf.train.Saver(max_to_keep=3)

  # 这里x、y给固定的值
  x_s = [[3.0]]
  y_s = [[100.0]]

  step = 0
  while (True):
    step += 1
    feed = {x: x_s, y: y_s}
    # 通过sess.run执行优化
    sess.run(train_step, feed_dict=feed)

    if step % 1000 == 0:
      print 'step: {0}, loss: {1}'.format(step, sess.run(lost, feed_dict=feed))
      if sess.run(lost, feed_dict=feed) < 1e-10 or step > 4e3:
        print ''
        # print 'final loss is: {}'.format(sess.run(lost, feed_dict=feed))
        print 'final result of {0} = {1}(目标值是100.0)'.format('x×W+b', 3.0 * sess.run(W) + sess.run(b))
        print ''
        print("模型保存的W值 : %f" % sess.run(W))
        print("模型保存的b : %f" % sess.run(b))
        break
  saver.save(sess, "./save_model/re-train", global_step=step) # 保存模型

训练完成之后生成模型文件:

训练输出:

step: 1000, loss: 4.89526428282e-08
step: 2000, loss: 4.89526428282e-08
step: 3000, loss: 4.89526428282e-08
step: 4000, loss: 4.89526428282e-08
step: 5000, loss: 4.89526428282e-08

final result of x×W+b = [[99.99978]](目标值是100.0)

模型保存的W值 : 29.999931
模型保存的b : 9.999982

保存在模型中的W值是 29.999931,b是 9.999982。

以下代码从保存的模型中恢复出训练状态,继续训练

任务描述: x = 3.0, y = 200.0, 运算公式 x×W+b = y,从上次训练的模型中恢复出训练参数,继续训练,求 W和b的最优解。

# -*- coding: utf-8 -*-)
import tensorflow as tf

# 声明占位变量x、y
x = tf.placeholder("float", shape=[None, 1])
y = tf.placeholder("float", [None, 1])

with tf.Session() as sess:

  # 初始化变量
  sess.run(tf.global_variables_initializer())

  # saver = tf.train.Saver(max_to_keep=3)
  saver = tf.train.import_meta_graph(r'./save_model/re-train-5000.meta') # 加载模型图结构
  saver.restore(sess, tf.train.latest_checkpoint(r'./save_model')) # 恢复数据

  # 从保存模型中恢复变量
  graph = tf.get_default_graph()
  W = graph.get_tensor_by_name("w:0")
  b = graph.get_tensor_by_name("b:0")

  print("从保存的模型中恢复出来的W值 : %f" % sess.run("w:0"))
  print("从保存的模型中恢复出来的b值 : %f" % sess.run("b:0"))

  # 操作
  result = tf.matmul(x, W) + b
  # 损失函数
  lost = tf.reduce_sum(tf.pow((result - y), 2))
  # 优化
  train_step = tf.train.GradientDescentOptimizer(0.0007).minimize(lost)

  # 这里x、y给固定的值
  x_s = [[3.0]]
  y_s = [[200.0]]

  step = 0
  while (True):
    step += 1
    feed = {x: x_s, y: y_s}
    # 通过sess.run执行优化
    sess.run(train_step, feed_dict=feed)
    if step % 1000 == 0:
      print 'step: {0}, loss: {1}'.format(step, sess.run(lost, feed_dict=feed))
      if sess.run(lost, feed_dict=feed) < 1e-10 or step > 4e3:
        print ''
        # print 'final loss is: {}'.format(sess.run(lost, feed_dict=feed))
        print 'final result of {0} = {1}(目标值是200.0)'.format('x×W+b', 3.0 * sess.run(W) + sess.run(b))
        print("模型保存的W值 : %f" % sess.run(W))
        print("模型保存的b : %f" % sess.run(b))
        break
  saver.save(sess, "./save_mode/re-train", global_step=step) # 保存模型

训练输出:

从保存的模型中恢复出来的W值 : 29.999931
从保存的模型中恢复出来的b值 : 9.999982
step: 1000, loss: 1.95810571313e-07
step: 2000, loss: 1.95810571313e-07
step: 3000, loss: 1.95810571313e-07
step: 4000, loss: 1.95810571313e-07
step: 5000, loss: 1.95810571313e-07

final result of x×W+b = [[199.99956]](目标值是200.0)
模型保存的W值 : 59.999866
模型保存的b : 19.999958

从保存的模型中恢复出来的W值是 29.999931,b是 9.999982,跟模型保存的值一致,说明加载成功。

总结

从头开始训练一个模型,需要通过 tf.train.Saver创建一个保存器,完成之后使用save方法保存模型到本地:

saver = tf.train.Saver(max_to_keep=3)
……
saver.save(sess, "./save_model/re-train", global_step=step) # 保存模型

在训练好的模型上继续训练,fineturn一个模型,可以使用tf.train.import_meta_graph方法加载图结构,使用restore方法恢复训练数据,最后使用同样的save方法保存到本地:

saver = tf.train.import_meta_graph(r'./save_model/re-train-10050.meta') # 加载模型图结构
saver.restore(sess, tf.train.latest_checkpoint(r'./save_model')) # 恢复数据
saver.save(sess, "./save_mode/re-train", global_step=step) # 保存模型

注:特殊情况下(如本例)需要从恢复的模型中加载出数据:

# 从保存模型中恢复变量
graph = tf.get_default_graph()
W = graph.get_tensor_by_name("w:0")
b = graph.get_tensor_by_name("b:0")

以上这篇tensorflow模型继续训练 fineturn实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow 模型载入方法汇总(小结)

    一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型较大时顺序恢复内存消耗小 True var_list是字典

  • 浅谈tensorflow中张量的提取值和赋值

    tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga

  • Python Tensor FLow简单使用方法实例详解

    本文实例讲述了Python Tensor FLow简单使用方法.分享给大家供大家参考,具体如下: 1.基础概念 Tensor表示张量,是一种多维数组的数据结构.Flow代表流,是指张量之间通过计算而转换的过程.TensorFLow通过一个计算图的形式表示编程过程,数据在每个节点之间流动,经过节点加工之后流向下一个节点. 计算图是一个有向图,其组成如下:节点:代表一个操作.边:代表节点之间的数据传递和控制依赖,其中实线代表两个节点之间的数据传递关系,虚线代表两个节点之间存在控制相关. 张量是所有数

  • tensorflow模型继续训练 fineturn实例

    解决tensoflow如何在已训练模型上继续训练fineturn的问题. 训练代码 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. # -*- coding: utf-8 -*-) import tensorflow as tf # 声明占位变量x.y x = tf.placeholder("float", shape=[None, 1]) y = tf.placeholder("float", [None,

  • 从训练好的tensorflow模型中打印训练变量实例

    从tensorflow 训练后保存的模型中打印训变量:使用tf.train.NewCheckpointReader() import tensorflow as tf reader = tf.train.NewCheckpointReader('path/alexnet/model-330000') dic = reader.get_variable_to_shape_map() print dic 打印变量 w = reader.get_tensor("fc1/W") print t

  • tensorflow如何继续训练之前保存的模型实例

    一:需重定义神经网络继续训练的方法 1.训练代码 import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b&qu

  • 对tensorflow 的模型保存和调用实例讲解

    我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了. 1.模型的保存 # 声明两个变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer(

  • tensorflow模型保存、加载之变量重命名实例

    话不多说,干就完了. 变量重命名的用处? 简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B 使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂. 实现方法: 1).模型保存 import os import tensorflow as tf weights = tf.Variable(initial_value

  • TensorFlow——Checkpoint为模型添加检查点的实例

    1.检查点 保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下来,否则下次又要重新训练. 这种在训练中保存模型,习惯上称之为保存检查点. 2.添加保存点 通过添加检查点,可以生成载入检查点文件,并能够指定生成检查文件的个数,例如使用saver的另一个参数--max_to_keep=1,表明最多只保存一个检查点文件,在保存时使用如下的代码传入迭代次数. import tensorflow as tf

  • tensorflow 固定部分参数训练,只训练部分参数的实例

    在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练. 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 def inference(input_): """ this is where you put your graph. the following is just an example. """ conv1 = tf.layers.conv2d(inp

  • 使用Keras训练好的.h5模型来测试一个实例

    环境:python 3.6 +opencv3+Keras 训练集:MNIST 下面划重点:因为MNIST使用的是黑底白字的图片,所以你自己手写数字的时候一定要注意把得到的图片也改成黑底白字的,否则会识别错(至少我得到的结论是这样的 ,之前用白底黑字的图总是识别出错) 注意:需要测试图片需要为与训练模时相同大小的图片,RGB图像需转为gray 代码: import cv2 import numpy as np from keras.models import load_model model =

  • Tensorflow实现在训练好的模型上进行测试

    Tensorflow可以使用训练好的模型对新的数据进行测试,有两种方法:第一种方法是调用模型和训练在同一个py文件中,中情况比较简单:第二种是训练过程和调用模型过程分别在两个py文件中.本文将讲解第二种方法. 模型的保存 tensorflow提供可保存训练模型的接口,使用起来也不是很难,直接上代码讲解: #网络结构 w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1)) b1 = tf.Variable(tf

  • tensorflow 模型权重导出实例

    tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,不利于将模型权重导入到其他框架使用(如Caffe.Keras等). 好在tensorflow提供了相关函数 tf.train.NewCheckpointReader 可以对ckpt文件进行权重查看,因此可以通过该函数进行数据导出. import tensorflow as tf import h5py cpktLogFileName = r'./checkpoi

随机推荐