pytorch_detach 切断网络反传方式

detach

官方文档中,对这个方法是这么介绍的。

    detach = _add_docstr(_C._TensorBase.detach, r"""
    Returns a new Tensor, detached from the current graph.
    The result will never require gradient.
    .. note::
      Returned Tensor uses the same data tensor as the original one.
      In-place modifications on either of them will be seen, and may trigger
      errors in correctness checks.
    """)

返回一个新的从当前图中分离的 Variable。

返回的 Variable 永远不会需要梯度

如果 被 detach 的Variable volatile=True, 那么 detach 出来的 volatile 也为 True

还有一个注意事项,即:返回的 Variable 和 被 detach 的Variable 指向同一个 tensor

import torch
from torch.nn import init
t1 = torch.tensor([1., 2.],requires_grad=True)
t2 = torch.tensor([2., 3.],requires_grad=True)
v3 = t1 + t2
v3_detached = v3.detach()
v3_detached.data.add_(t1) # 修改了 v3_detached Variable中 tensor 的值
print(v3, v3_detached)    # v3 中tensor 的值也会改变
print(v3.requires_grad,v3_detached.requires_grad)
'''
tensor([4., 7.], grad_fn=<AddBackward0>) tensor([4., 7.])
True False
'''

在pytorch中通过拷贝需要切断位置前的tensor实现这个功能。tensor中拷贝的函数有两个,一个是clone(),另外一个是copy_(),clone()相当于完全复制了之前的tensor,他的梯度也会复制,而且在反向传播时,克隆的样本和结果是等价的,可以简单的理解为clone只是给了同一个tensor不同的代号,和‘='等价。所以如果想要生成一个新的分开的tensor,请使用copy_()。

不过对于这样的操作,pytorch中有专门的函数——detach()。

用户自己创建的节点是leaf_node(如图中的abc三个节点),不依赖于其他变量,对于leaf_node不能进行in_place操作.根节点是计算图的最终目标(如图y),通过链式法则可以计算出所有节点相对于根节点的梯度值.这一过程通过调用root.backward()就可以实现.

因此,detach所做的就是,重新声明一个变量,指向原变量的存放位置,但是requires_grad为false.更深入一点的理解是,计算图从detach过的变量这里就断了, 它变成了一个leaf_node.即使之后重新将它的requires_node置为true,它也不会具有梯度.

pytorch 梯度

(0.4之后),tensor和variable合并,tensor具有grad、grad_fn等属性;

默认创建的tensor,grad默认为False, 如果当前tensor_grad为None,则不会向前传播,如果有其它支路具有grad,则只传播其它支路的grad

# 默认创建requires_grad = False的Tensor
x = torch.ones(1)   # create a tensor with requires_grad=False (default)
print(x.requires_grad)
 # out: False

 # 创建另一个Tensor,同样requires_grad = False
y = torch.ones(1)  # another tensor with requires_grad=False
 # both inputs have requires_grad=False. so does the output
z = x + y
 # 因为两个Tensor x,y,requires_grad=False.都无法实现自动微分,
 # 所以操作(operation)z=x+y后的z也是无法自动微分,requires_grad=False
print(z.requires_grad)
 # out: False

 # then autograd won't track this computation. let's verify!
 # 因而无法autograd,程序报错
# z.backward()
 # out:程序报错:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

# now create a tensor with requires_grad=True
w = torch.ones(1, requires_grad=True)
print(w.requires_grad)
 # out: True

 # add to the previous result that has require_grad=False
 # 因为total的操作中输入Tensor w的requires_grad=True,因而操作可以进行反向传播和自动求导。
total = w + z
# the total sum now requires grad!
total.requires_grad
# out: True
# autograd can compute the gradients as well
total.backward()
print(w.grad)
#out: tensor([ 1.])
# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由于z,x,y的requires_grad=False,所以并没有计算三者的梯度
z.grad == x.grad == y.grad == None
# True

nn.Paramter

import torch.nn.functional as F
# With square kernels and equal stride
filters = torch.randn(8,4,3,3)
weiths = torch.nn.Parameter(torch.randn(8,4,3,3))
inputs = torch.randn(1,4,5,5)
out = F.conv2d(inputs, weiths, stride=2,padding=1)
print(out.shape)
con2d = torch.nn.Conv2d(4,8,3,stride=2,padding=1)
out_2 = con2d(inputs)
print(out_2.shape)

补充:Pytorch-detach()用法

目的:

神经网络的训练有时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整。

或者训练部分分支网络,并不让其梯度对主网络的梯度造成影响.这时候我们就需要使用detach()函数来切断一些分支的反向传播.

1 tensor.detach()

返回一个新的tensor,从当前计算图中分离下来。但是仍指向原变量的存放位置,不同之处只是requirse_grad为false.得到的这个tensir永远不需要计算器梯度,不具有grad.

即使之后重新将它的requires_grad置为true,它也不会具有梯度grad.这样我们就会继续使用这个新的tensor进行计算,后面当我们进行反向传播时,到该调用detach()的tensor就会停止,不能再继续向前进行传播.

注意:

使用detach返回的tensor和原始的tensor共同一个内存,即一个修改另一个也会跟着改变。

比如正常的例子是:

import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a)
print(a.grad)
out = a.sigmoid()

out.sum().backward()
print(a.grad)

输出

tensor([1., 2., 3.], requires_grad=True)

None

tensor([0.1966, 0.1050, 0.0452])

1.1 当使用detach()分离tensor但是没有更改这个tensor时,并不会影响backward():

import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#这时候没有对c进行更改,所以并不会影响backward()
out.sum().backward()
print(a.grad)

'''返回:
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
'''

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • 浅谈pytorch中的nn.Sequential(*net[3: 5])是啥意思

    看到代码里面有这个 1 class ResNeXt101(nn.Module): 2 def __init__(self): 3 super(ResNeXt101, self).__init__() 4 net = resnext101() # print(os.getcwd(), net) 5 net = list(net.children()) # net.children()得到resneXt 的表层网络 # for i, value in enumerate(net): # print(

  • PyTorch CUDA环境配置及安装的步骤(图文教程)

    Pytorch版本介绍 torch:1.6 CUDA:10.2 cuDNN:8.1.0 ✨安装 NVIDIA 显卡驱动程序 一般 电脑出厂/装完系统 会自动安装显卡驱动 如果有 可直接进行下一步 下载链接 http://www.nvidia.cn/Download/index.aspx?lang=cn 选择和自己显卡相匹配的显卡驱动 下载安装 ✨确认项目所需torch版本 # pip install -r requirements.txt # base ---------------------

  • Pytorch实现图像识别之数字识别(附详细注释)

    使用了两个卷积层加上两个全连接层实现 本来打算从头手撕的,但是调试太耗时间了,改天有时间在从头写一份 详细过程看代码注释,参考了下一个博主的文章,但是链接没注意关了找不到了,博主看到了联系下我,我加上 代码相关的问题可以评论私聊,也可以翻看博客里的文章,部分有详细解释 Python实现代码: import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transf

  • pytorch实现线性回归以及多元回归

    本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下 最近在学习pytorch,现在把学习的代码放在这里,下面是github链接 直接附上github代码 # 实现一个线性回归 # 所有的层结构和损失函数都来自于 torch.nn # torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93

  • win10系统配置GPU版本Pytorch的详细教程

    一.安装cuda 1.在英伟达官网下载最新版的cuda驱动 https://developer.nvidia.com/zh-cn/cuda-downloads 都选上就行了,然后一路默认安装 输入nvcc -V查看是否安装成功 二.安装pycuda 1.在控制台中输入pip install pycuda 安装pycuda 2.在环境变量中添加cl.exe 3.测试pycuda是否正常运行 import pycuda.driver as drv import pycuda.tools,pycuda

  • pytorch visdom安装开启及使用方法

    安装 conda activate ps pip install visdom 激活ps的环境,在指定的ps环境中安装visdom 开启 python -m visdom.server 浏览器输入红框内的网址 使用 1. 简单示例:一条线 from visdom import Visdom # 创建一个实例 viz=Visdom() # 创建一个直线,再把最新数据添加到直线上 # y x二维两个轴,win 创建一个小窗口,不指定就默认为大窗口,opts其他信息比如名称 viz.line([1,2

  • pytorch中的nn.ZeroPad2d()零填充函数实例详解

    在卷积神经网络中,有使用设置padding的参数,配合卷积步长,可以使得卷积后的特征图尺寸大小不发生改变,那么在手动实现图片或特征图的边界零填充时,常用的函数是nn.ZeroPad2d(),可以指定tensor的四个方向上的填充,比如左边添加1dim.右边添加2dim.上边添加3dim.下边添加4dim,即指定paddin参数为(1,2,3,4),本文中代码设置的是(3,4,5,6)如下: import torch.nn as nn import cv2 import torchvision f

  • 聊聊PyTorch中eval和no_grad的关系

    首先这两者有着本质上区别 model.eval()是用来告知model内的各个layer采取eval模式工作.这个操作主要是应对诸如dropout和batchnorm这些在训练模式下需要采取不同操作的特殊layer.训练和测试的时候都可以开启. torch.no_grad()则是告知自动求导引擎不要进行求导操作.这个操作的意义在于加速计算.节约内存.但是由于没有gradient,也就没有办法进行backward.所以只能在测试的时候开启. 所以在evaluate的时候,需要同时使用两者. mod

  • pytorch 优化器(optim)不同参数组,不同学习率设置的操作

    optim 的基本使用 for do: 1. 计算loss 2. 清空梯度 3. 反传梯度 4. 更新参数 optim的完整流程 cifiron = nn.MSELoss() optimiter = torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9) for i in range(iters): out = net(inputs) loss = cifiron(out,label) optimiter.zero_grad() # 清空之前

  • pytorch 禁止/允许计算局部梯度的操作

    一.禁止计算局部梯度 torch.autogard.no_grad: 禁用梯度计算的上下文管理器. 当确定不会调用Tensor.backward()计算梯度时,设置禁止计算梯度会减少内存消耗.如果需要计算梯度设置Tensor.requires_grad=True 两种禁用方法: 将不用计算梯度的变量放在with torch.no_grad()里 >>> x = torch.tensor([1.], requires_grad=True) >>> with torch.n

  • PyTorch 如何将CIFAR100数据按类标归类保存

    few-shot learning的采样 Few-shot learning 基于任务对模型进行训练,在N-way-K-shot中,一个任务中的meta-training中含有N类,每一类抽取K个样本构成support set, query set则是在刚才抽取的N类剩余的样本中sample一定数量的样本(可以是均匀采样,也可以是不均匀采样). 对数据按类标归类 针对上述情况,我们需要使用不同类别放置在不同文件夹的数据集.但有时,数据并没有按类放置,这时就需要对数据进行处理. 下面以CIFAR1

  • 使用pytorch实现线性回归

    本文实例为大家分享了pytorch实现线性回归的具体代码,供大家参考,具体内容如下 线性回归都是包括以下几个步骤:定义模型.选择损失函数.选择优化函数. 训练数据.测试 import torch import matplotlib.pyplot as plt # 构建数据集 x_data= torch.Tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0]]) y_data= torch.Tensor([[2.0],[4.0],[6.0],[8.0],[10.0]

  • PyTorch学习之软件准备与基本操作总结

    一.概述 PyTorch可以认为是一个Python库,可以像NumPy.Pandas一样被调用.PyTorch和NumPy功能是类似的,可以将PyTorch看作用在神经网络(深度学习)里的NumPy,并且加入了GPU支持的NumPy(原生NumPy不支持GPU). 目前,应用最广.热度最高的深度学习框架为PyTorch和TensorFlow.本系列先从PyTorch开始,后面有机会再去弄TersonFlow,还有时间的话,就再去系统回顾下之前学习的Caffe框架. 小结:PyTorch为深度学习

  • 如何利用Pytorch计算三角函数

    一.加载库 首先加载torch库,进入python后加载库使用import导入 [import 库名] 二.sin值计算方法 pytorch中的sin计算都是基于tensor的,所以无论单个值还是多个值同时计算sin值,都需要首先将输入量转换为tensor 使用指令: [torch.sin(tensor)] 实例中,使用了计算单个和多个sin值时的情况 三.cos值计算方法 pytorch中的cos计算都是基于tensor的,所以无论单个值还是多个值同时计算cos值,都需要首先将输入量转换为te

  • Python深度学习之使用Pytorch搭建ShuffleNetv2

    一.model.py 1.1 Channel Shuffle def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size

  • Pytorch实现全连接层的操作

    全连接神经网络(FC) 全连接神经网络是一种最基本的神经网络结构,英文为Full Connection,所以一般简称FC. FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接. 以上一次的MNIST为例 import torch import torch.utils.data from torch import optim from torchvision import datasets from torchvision.transforms import transf

  • PyTorch的Debug指南

    一.ipdb 介绍 很多初学 python 的同学会使用 print 或 log 调试程序,但是这只在小规模的程序下调试很方便,更好的调试应该是在一边运行的时候一边检查里面的变量和方法. 感兴趣的可以去了解 pycharm 的 debug 模式,功能也很强大,能够满足一般的需求,这里不多做赘述,我们这里介绍一个更适用于 pytorch 的一个灵活的 pdb 交互式调试工具. Pdb 是一个交互式的调试工具,集成与 Python 标准库中,它能让你根据需求跳转到任意的 Python 代码断点.查看

随机推荐