python+opencv图像分割实现分割不规则ROI区域方法汇总

在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域。如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片。但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路。

可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正。

一、已知边界坐标,直接画出多边形

例:最基础的画个四边形

# 定义四个顶点坐标
pts = np.array([[10, 5],  [50, 10], [70, 20], [20, 30]], np.int32)
# 顶点个数:4,矩阵变成4*1*2维
# OpenCV中需要将多边形的顶点坐标变成顶点数×1×2维的矩阵
# 这里 reshape 的第一个参数为-1, 表示“任意”,意思是这一维的值是根据后面的维度的计算出来的
pts = pts.reshape((-1, 1, 2))
cv2.polylines(img, [pts], True, (0, 255, 255))

上例中,img是你的画布原图。pts你可以随便改,改成自己的边界点。注意cv2.polylines中参数pts要加[ ]。

二、通过形态学操作产生Mask

腐蚀、膨胀之后,产生二值化(非黑即白)的mask,然后和图像做与运算。

腐蚀膨胀的操作方法简单复习一下:

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))  # 矩形结构:MORPH_RECT
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15))  # 椭圆结构:MORPH_ELLIPSE
img = cv2.erode(img, kernel)  # 腐蚀
img = cv2.dilate(img, kernel)  # 膨胀

我们都知道,腐蚀膨胀完后会得到一个二值化的掩模(mask)。

    mask = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) #img是腐蚀膨胀完的图片
    ROI = cv2.bitwise_and(mask, oriimg) #oriimg是原始图片
    cv2.imshow('ROI',ROI)
    if cv2.waitKey(500) and 0xff == ord('q'):
        cv2.destroyAllWindows()

讲原始图片和mask做一个掩模就可以得到最终图像了(例子此处就不举了因为一些图片涉及科研内容,paper还未发表,请自行试一下吧)。

三、人机交互式

用鼠标点击,产生多边形。

这样是比较精确的,比较是人工操作,但是比较麻烦,如果有上万张图片,你不可能每张都自己鼠标去分割出来一下。但是这个方法可以用于获取ROI的ground-truth,然后用来和机器分割的结果做对比,计算准确率、召回率等评价指标!所以学一下还是有用的。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 29 19:18:28 2019
@author: youxinlin
"""

import cv2
import numpy as np

# -----------------------鼠标操作相关------------------------------------------
lsPointsChoose = []
tpPointsChoose = []
pointsCount = 0
count = 0
pointsMax = 6
def on_mouse(event, x, y, flags, param):
    global img, point1, point2, count, pointsMax
    global lsPointsChoose, tpPointsChoose  # 存入选择的点
    global pointsCount  # 对鼠标按下的点计数
    global img2, ROI_bymouse_flag
    img2 = img.copy()  # 此行代码保证每次都重新再原图画  避免画多了
    # -----------------------------------------------------------
    #    count=count+1
    #    print("callback_count",count)
    # --------------------------------------------------------------

    if event == cv2.EVENT_LBUTTONDOWN:  # 左键点击
        pointsCount = pointsCount + 1
        # 感觉这里没有用?2018年8月25日20:06:42
        # 为了保存绘制的区域,画的点稍晚清零
        # if (pointsCount == pointsMax + 1):
        #     pointsCount = 0
        #     tpPointsChoose = []
        print('pointsCount:', pointsCount)
        point1 = (x, y)
        print (x, y)
        # 画出点击的点
        cv2.circle(img2, point1, 10, (0, 255, 0), 2)

        # 将选取的点保存到list列表里
        lsPointsChoose.append([x, y])  # 用于转化为darry 提取多边形ROI
        tpPointsChoose.append((x, y))  # 用于画点
        # ----------------------------------------------------------------------
        # 将鼠标选的点用直线连起来
        print(len(tpPointsChoose))
        for i in range(len(tpPointsChoose) - 1):
            print('i', i)
            cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)
        # ----------------------------------------------------------------------
        # ----------点击到pointMax时可以提取去绘图----------------

        cv2.imshow('src', img2)

# -------------------------右键按下清除轨迹-----------------------------
    if event == cv2.EVENT_RBUTTONDOWN:  # 右键点击
        print("right-mouse")
        pointsCount = 0
        tpPointsChoose = []
        lsPointsChoose = []
        print(len(tpPointsChoose))
        for i in range(len(tpPointsChoose) - 1):
            print('i', i)
            cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)
        cv2.imshow('src', img2)

    # -------------------------双击 结束选取-----------------------------
    if event == cv2.EVENT_LBUTTONDBLCLK:
    # -----------绘制感兴趣区域-----------
        ROI_byMouse()
        ROI_bymouse_flag = 1
        lsPointsChoose = []

def ROI_byMouse():
    global src, ROI, ROI_flag, mask2
    mask = np.zeros(img.shape, np.uint8)
    pts = np.array([lsPointsChoose], np.int32)  # pts是多边形的顶点列表(顶点集)
    pts = pts.reshape((-1, 1, 2))
    # 这里 reshape 的第一个参数为-1, 表明这一维的长度是根据后面的维度的计算出来的。
    # OpenCV中需要先将多边形的顶点坐标变成顶点数×1×2维的矩阵,再来绘制

    # --------------画多边形---------------------
    mask = cv2.polylines(mask, [pts], True, (255, 255, 255))
    ##-------------填充多边形---------------------
    mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))
    cv2.imshow('mask', mask2)
    cv2.imwrite('mask.jpg', mask2)
    image,contours, hierarchy = cv2.findContours(cv2.cvtColor(mask2, cv2.COLOR_BGR2GRAY), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    ROIarea = cv2.contourArea(contours[0])
    print("ROIarea:",ROIarea)
    ROI = cv2.bitwise_and(mask2, img)
    cv2.imwrite('ROI.jpg', ROI)
    cv2.imshow('ROI', ROI)

img = cv2.imread('3.png')
# ---------------------------------------------------------
# --图像预处理,设置其大小
# height, width = img.shape[:2]
# size = (int(width * 0.3), int(height * 0.3))
# img = cv2.resize(img, size, interpolation=cv2.INTER_AREA)
# ------------------------------------------------------------
ROI = img.copy()
cv2.namedWindow('src')
cv2.setMouseCallback('src', on_mouse)
cv2.imshow('src', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

你可以增加更多的功能。。。附:鼠标点击事件 :

'''
EVENT_FLAG_ALTKEY = 32  摁住Alt
EVENT_FLAG_CTRLKEY = 8  摁住Ctrl
EVENT_FLAG_LBUTTON = 1  摁住左键
EVENT_FLAG_MBUTTON = 4  摁住中键
EVENT_FLAG_RBUTTON = 2  摁住右键
EVENT_FLAG_SHIFTKEY = 16 摁住Shift
EVENT_LBUTTONDBLCLK = 7  左键双击
EVENT_LBUTTONDOWN = 1  左键击下
EVENT_LBUTTONUP = 4   左键弹起
EVENT_MBUTTONDBLCLK = 9  中键双击
EVENT_MBUTTONDOWN = 3  中键击下
EVENT_MBUTTONUP = 6   中键弹起
EVENT_MOUSEHWHEEL = 11  滚动条向左,flags>0。向右,flags<0
EVENT_MOUSEMOVE = 0   鼠标移动
EVENT_MOUSEWHEEL = 10  滚动条向上,flags>0。向下,flags<0
EVENT_RBUTTONDBLCLK = 8  中键双击
EVENT_RBUTTONDOWN = 2  中键击下
EVENT_RBUTTONUP = 5   中键弹起
'''

到此这篇关于python+opencv图像分割实现分割不规则ROI区域方法汇总的文章就介绍到这了,更多相关opencv 分割不规则ROI区域内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python-opencv颜色提取分割方法

    1.用于简单的对象检测.跟踪 2.简单前背景分割 #encoding:utf-8 #黄色检测 import numpy as np import argparse import cv2 image = cv2.imread('huang.png') color = [ ([0, 70, 70], [100, 255, 255])#黄色范围~这个是我自己试验的范围,可根据实际情况自行调整~注意:数值按[b,g,r]排布 ] #如果color中定义了几种颜色区间,都可以分割出来 for (lower

  • Python+OpenCV实现车牌字符分割和识别

    最近做一个车牌识别项目,入门级别的,十分简单. 车牌识别总体分成两个大的步骤: 一.车牌定位:从照片中圈出车牌 二.车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1.图像处理 原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道.在这种情况下,很难区分谁是背景,谁是字符,所以需要对图像进行一些处理,把每个RGB定义的像素点都转化成一个bit位(即0-1代码),具体方法如下: ①将图片灰度化 名字拗口,但是意思很好理解,就是把每个像素的RGB都变成灰色的RGB值,而灰色的

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • python+opencv实现阈值分割

    最近老师留了几个作业,虽然用opencv很简单一句话就出来了,但是还没用python写过.在官方文档中的tutorial中的threshold里,看到可以创建两个滑动条来选择type和value,决定用python实现一下 注意python中的全局变量,用global声明 开始出现了一些问题,因为毁掉函数每次只能传回一个值,所以每次只能更新value,后来就弄了两个毁掉函数,这个时候,又出现了滑动其中一个,另一个的值就会变为默认值的情况,这个时候猜想是全局变量的问题,根据猜想改动之后果然是. 感

  • python3+opencv生成不规则黑白mask实例

    废话不多说,直接上代码吧! # -*- coding: utf-8 -*- import cv2 import numpy as np # -----------------------鼠标操作相关------------------------------------------ lsPointsChoose = [] tpPointsChoose = [] pointsCount = 0 count = 0 pointsMax = 10 def on_mouse(event, x, y, f

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • python用opencv完成图像分割并进行目标物的提取

    运行平台: Windows Python版本: Python3.x IDE: Spyder 今天我们想实现的功能是对单个目标图片的提取如图所示: 图片读取 ###############头文件 import matplotlib.pyplot as plt import os import cv2 import numpy as np from PIL import Image #from skimage import io import random from PIL import Image

  • python+opencv图像分割实现分割不规则ROI区域方法汇总

    在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域.如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片.但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路. 可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正. 一.已知边界坐标,直接画出多边形 例:最基础的画个四边形 # 定义四个顶点坐标 pts = np.array([[10

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • 详解Python OpenCV图像分割算法的实现

    目录 前言 1.图像二值化 2.自适应阈值分割算法 3.Otsu阈值分割算法 4.基于轮廓的字符分离 4.1轮廓检测 4.2轮廓绘制 4.3包围框获取 4.4矩形绘制 前言 图像分割是指根据灰度.色彩.空间纹理.几何形状等特征把图像划分成若干个互不相交的区域. 最简单的图像分割就是将物体从背景中分割出来 1.图像二值化 cv2.threshold是opencv-python中的图像二值化方法,可以实现简单的分割功能. retval, dst = cv2.threshold(src, thresh

  • Python+OpenCV实现阈值分割的方法详解

    目录 一.全局阈值 1.效果图 2.源码 二.滑动改变阈值(滑动条) 1.效果图 2.源码 三.自适应阈值分割 1.效果图 2.源码 3.GaussianBlur()函数去噪 四.参数解释 一.全局阈值 原图: 整幅图采用一个阈值,与图片的每一个像素灰度进行比较,重新赋值: 1.效果图 2.源码 import cv2 import matplotlib.pyplot as plt #设定阈值 thresh=130 #载入原图,并转化为灰度图像 img_original=cv2.imread(r'

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • Python OpenCV招商银行信用卡卡号识别的方法

    学在前面 从本篇博客起,我们将实际完成几个小案例,第一个就是银行卡号识别,预计本案例将写 5 篇左右的博客才可以完成,一起加油吧. 本文的目标是最终获取一套招商银行卡,0~9 数字的图,对于下图的数字,我们需要提取出来,便于后续模板匹配使用.不过下图中找到的数字不完整,需要找到尽量多的卡片,然后补齐这些数字. 提取卡片相关数字 先对上文中卡片中的数字进行相关提取操作,加载图片的灰度图,获取目标区域.在画板中模拟一下坐标区域,为了便于进行后续的操作. 具体代码如下: import cv2 as c

  • python OpenCV学习笔记之绘制直方图的方法

    本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直

  • Python OpenCV 直方图的计算与显示的方法示例

    本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了.这里直接介绍方法. 计算并显示直方图 与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist. cv2.calcHist的原型为: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回his

  • Python OpenCV中的drawMatches()关键匹配绘制方法

    目录 作用说明 函数原型 参数详解 结果 作用说明 该方法被用于绘制关键点的匹配情况.我们看到的许多匹配结果都是使用这一方法绘制的——一左一右两张图像,匹配的关键点之间用线条链接. 函数原型 cv.drawMatches( img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg cv.drawMatche

  • Python+OpenCV实现鼠标画瞄准星的方法详解

    目录 函数说明 cv2.circle() cv2.line() 简单的例子 利用鼠标回调函数画瞄准星 所谓瞄准星指的是一个圆圈加一个圆圈内的十字线,就像玩射击游戏狙击枪开镜的样子一样.这里并不是直接在图上画一个瞄准星,而是让这个瞄准星跟着鼠标走.在图像标注任务中,可以利用瞄准星进行一些辅助,特别是回归类的任务,使用该功能可以使得关键点的标注更加精准. 关于鼠标回调函数的说明可以参考:opencv-python的鼠标交互操作 函数说明 import cv2后,可以分别help(cv2.circle

随机推荐