C#中OpenCVSharp实现轮廓检测

OpenCv提供了函数 findContours()用于对物体轮廓进行检测,该函数实现算法是由S.suzuki K.Abe于1985年发表的。OpenCVSharp封装了这个函数,有2个参数(contours,hierarchy)要做特别的说明。

public static void FindContours(InputOutputArray image, out Point[][] contours,
out HierarchyIndex[] hierarchy, RetrievalModes mode,
ContourApproximationModes method, Point? offset = null);

解析:contours 的类型是Point[][],它相当于OpenCV中的Vector<Vector<Point>> contours,存储多个轮廓,每个轮廓是由若干个点组成,可以在该函数前声明Point[][] contours;,在C#中没有赋值的变量在用的时候是不允许的,因为它是输出的结果,可以不需要给它new空间,但必须在函数的参数中声明是out;参数hierarchy为包含图像拓扑结构的信息,它是HierarchyIndex[]类型,这是输入的结果,同样要在函数的参数中声明为out。具体代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using OpenCvSharp;
using OpenCvSharp.Extensions;
namespace OpenCvSharp_03
{
  class Program
  {

    static void Main(string[] args)
    {

      Mat srcImage = Cv2.ImRead(@"D:\MyData\circle.jpg");
      Mat dst_Image = MyFindContours(srcImage);
      Cv2.ImShow("srcImage:", srcImage);
      Cv2.ImShow("contours", dst_Image);
      Cv2.WaitKey();

    }
    public static Mat MyFindContours(Mat srcImage)
    {
      //转化为灰度图
      Mat src_gray = new Mat();
      Cv2.CvtColor(srcImage, src_gray, ColorConversionCodes.RGB2GRAY);

      //滤波
      Cv2.Blur(src_gray, src_gray, new Size(3, 3));

      //Canny边缘检测
      Mat canny_Image = new Mat();
      Cv2.Canny(src_gray, canny_Image, 100, 200);

      //获得轮廓
      Point[][] contours;
      HierarchyIndex[] hierarchly;
      Cv2.FindContours(canny_Image,out contours,out hierarchly, RetrievalModes.Tree,ContourApproximationModes.ApproxSimple,new Point(0,0));

      //将结果画出并返回结果
      Mat dst_Image = Mat.Zeros(canny_Image.Size(),srcImage.Type());
      Random rnd = new Random();
      for (int i = 0; i < contours.Length; i++)
      {
        Scalar color = new Scalar(rnd.Next(0,255),rnd.Next(0,255),rnd.Next(0,255));
        Cv2.DrawContours(dst_Image, contours, i, color, 2,LineTypes.Link8, hierarchly);
      }
      return dst_Image;
    }
  }
}

我封装好了MyFindContours()这个函数,方便大家调用进行测试

测试结果如下:

到此这篇关于C#中OpenCVSharp实现轮廓检测的文章就介绍到这了,更多相关C# OpenCVSharp轮廓检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C#中OpenCvSharp 通过特征点匹配图片的方法

    现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思. 这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应动作的按钮或者触发条件的小图. 找到之后获取该子区域的左上角坐标,然后通过windows API调用鼠标或者键盘做操作就行了. 这里面最难的也就是找图了,因为要精准找图,而且最好能适应不同的分辨率下找图,所以在模板匹配的基础上,就有了SIFT和SURF的特征点找图方式. 在写的过程中查找资料,大都是

  • OpenCvSharp图像的修改和保存以及掩膜操作

    一 :图像的颜色空间转换 在OpenCvSharp中颜色转换函数为:Cv2.CvtColor() 参数: 参数 说明 src: 源图像,8位无符号,16位无符号或单精度浮点 dst: 输出图像,具有与src相同的大小和深度 code: 颜色空间转换代码:(ColorConversionCodes)枚举类型 代码: static void Main(string[] args) { Mat src = new Mat(@"C:\Users\whx\Desktop\opcvImage\s1.jpg

  • 在C#中使用OpenCV(使用OpenCVSharp)的实现

     1.什么是OpenCVSharp 为了解决在Csharp下编写OpenCV程序的问题,我做过比较深入的研究,并且实现了高效可用的方法(GOCW):这几天在搜集资料的时候,偶尔看见了OpenCVSharp,从时间上来看,它已经经过了更久的发展,应该有许多直接借鉴.或者直接使用的地方. OpenCVSharp有一名日本工程师开发,项目地址为:https://github.com/shimat/opencvsharp.其是OpenCV的.NET wrapper,它比Emgucv更接近于原始的Open

  • C#中OpenCVSharp实现轮廓检测

    OpenCv提供了函数 findContours()用于对物体轮廓进行检测,该函数实现算法是由S.suzuki K.Abe于1985年发表的.OpenCVSharp封装了这个函数,有2个参数(contours,hierarchy)要做特别的说明. public static void FindContours(InputOutputArray image, out Point[][] contours, out HierarchyIndex[] hierarchy, RetrievalModes

  • OpenCV-Python实现轮廓检测实例分析

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope

  • python+opencv轮廓检测代码解析

    首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • OpenCV 轮廓检测的实现方法

    轮廓概述 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度.轮廓在形状分析和物体的检测和识别中很有用. 为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测. 查找轮廓的函数会修改原始图像.如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他变量中. 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体,要找的物体应该是白色而背景应该是黑色. 轮廓检测的作用: 1.可以检测图图像或者视频中物体的轮廓 2.计算

  • Python使用Opencv实现边缘检测以及轮廓检测的实现

    边缘检测 Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化. Canny边缘检测器算法基本步骤: 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声. 计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直.水平和斜对角.这一步的输出用于在下一步中计算真正的边缘. 非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于

  • opencv实现图形轮廓检测

    要想实现轮廓检测,首先我们需要对待检测的图像进行图像处理: 图像灰度化.高斯滤波.Canny 边缘检测.边缘检测放大处理.提取轮廓. 一.实现简单的全图型检测 即只要将drawContours第三个参数设置为-1 既能实现图像的全图型检测. 程序: #include <iostream> #include <opencv2/highgui.hpp> // 说是说gui 具体什么gui 不清楚 #include <opencv2/imgcodecs.hpp> // 图像头

  • OpenCV实现轮廓检测与绘制

    图像的轮廓不仅能够提供物体的边缘,而且还能提供物体边缘之间的层次关系以及拓扑关系. 带有结构关系的边缘检测,这种结构关系可以表明图像中连通域或者某些区域之间的关系. 图为一个具有4个不连通边缘的二值化图像,由外到内依次为0号.1号.2号.3号条边缘.为了描述不同轮廓之间的结构关系,定义由外到内的轮廓级别越来越低,也就是高一层级的轮廓包围着较低层级的轮廓,被同一个轮廓包围的多个不互相包含的轮廓是同一层级轮廓.例如在图中,0号轮廓层级比1号和第2号轮廓的层及都要高,2号轮廓包围着3号轮廓,因此2号轮

  • OpenCV轮廓检测之boundingRect绘制矩形边框

    目录 函数原型 参数说明 测试代码 测试效果 补充 函数原型 cv::Rect boundingRect( InputArray array ); 参数说明 输入:InputArray类型的array,输入灰度图像或二维点集. 输出:Rect类型的矩形信息,包括矩形尺寸和位置. 测试代码 #include <iostream> #include <time.h> #include <opencv2/opencv.hpp> using namespace std; usi

  • for循环中删除map中的元素valgrind检测提示error:Invalid read of size 8

    废话不多说,先看下面一段代码 #include <iostream> #include <map> using namespace std; class A { public: typedef std::map<int, string> myMap; void mapInsert(int i, string s) { map.insert(std::make_pair(i, s)); } void deleteMap() { for (myMap::iterator i

随机推荐