C语言实现面向对象的方法详解

目录
  • 1、引言
  • 2、封装
  • 3、继承
  • 4、多态
    • 4.1 虚表和虚指针
    • 4.2 在构造函数中设置vptr
    • 4.3 继承 vtbl 和 重载 vptr
    • 4.4 虚函数调用
    • 4.5 main.c
  • 5、总结

1、引言

面向对象编程(OOP)并不是一种特定的语言或者工具,它只是一种设计方法、设计思想。它表现出来的三个最基本的特性就是封装、继承与多态。很多面向对象的编程语言已经包含这三个特性了,例如 Smalltalk、C++、Java。但是你也可以用几乎所有的编程语言来实现面向对象编程,例如 ANSI-C。要记住,面向对象是一种思想,一种方法,不要太拘泥于编程语言。

2、封装

封装就是把数据和方法打包到一个类里面。其实C语言编程者应该都已经接触过了,C 标准库中的 fopen(), fclose(), fread(), fwrite()等函数的操作对象就是 FILE。数据内容就是 FILE,数据的读写操作就是 fread()、fwrite(),fopen() 类比于构造函数,fclose() 就是析构函数。这个看起来似乎很好理解,那下面我们实现一下基本的封装特性。

#ifndef SHAPE_H
#define SHAPE_H

#include <stdint.h>

// Shape 的属性
typedef struct {
    int16_t x;
    int16_t y;
} Shape;

// Shape 的操作函数,接口函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y);
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);
int16_t Shape_getX(Shape const * const me);
int16_t Shape_getY(Shape const * const me);

#endif /* SHAPE_H */

这是 Shape 类的声明,非常简单,很好理解。一般会把声明放到头文件里面 “Shape.h”。

来看下 Shape 类相关的定义,当然是在 “Shape.c” 里面。

#include "shape.h"

// 构造函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y)
{
    me->x = x;
    me->y = y;
}

void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy)
{
    me->x += dx;
    me->y += dy;
}

// 获取属性值函数
int16_t Shape_getX(Shape const * const me)
{
    return me->x;
}
int16_t Shape_getY(Shape const * const me)
{
    return me->y;
}

再看下 main.c

#include "shape.h"  /* Shape class interface */
#include <stdio.h>  /* for printf() */

int main()
{
    Shape s1, s2; /* multiple instances of Shape */

    Shape_ctor(&s1, 0, 1);
    Shape_ctor(&s2, -1, 2);

    printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1));
    printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));

    Shape_moveBy(&s1, 2, -4);
    Shape_moveBy(&s2, 1, -2);

    printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1));
    printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));

    return 0;
}

编译之后,看看执行结果:

Shape s1(x=0,y=1)
Shape s2(x=-1,y=2)
Shape s1(x=2,y=-3)
Shape s2(x=0,y=0)

整个例子,非常简单,非常好理解。以后写代码时候,要多去想想标准库的文件IO操作,这样也有意识的去培养面向对象编程的思维。

3、继承

继承就是基于现有的一个类去定义一个新类,这样有助于重用代码,更好的组织代码。在 C 语言里面,去实现单继承也非常简单,只要把基类放到继承类的第一个数据成员的位置就行了。

例如,我们现在要创建一个 Rectangle 类,我们只要继承 Shape 类已经存在的属性和操作,再添加不同于 Shape 的属性和操作到 Rectangle 中。

下面是 Rectangle 的声明与定义:

#ifndef RECT_H
#define RECT_H

#include "shape.h" // 基类接口

// 矩形的属性
typedef struct {
    Shape super; // 继承 Shape

    // 自己的属性
    uint16_t width;
    uint16_t height;
} Rectangle;

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height);

#endif /* RECT_H */
#include "rect.h"

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height)
{
    /* first call superclass' ctor */
    Shape_ctor(&me->super, x, y);

    /* next, you initialize the attributes added by this subclass... */
    me->width = width;
    me->height = height;
}

我们来看一下 Rectangle 的继承关系和内存布局

因为有这样的内存布局,所以你可以很安全的传一个指向 Rectangle 对象的指针到一个期望传入 Shape 对象的指针的函数中,就是一个函数的参数是 “Shape *”,你可以传入 “Rectangle *”,并且这是非常安全的。这样的话,基类的所有属性和方法都可以被继承类继承!

#include "rect.h"
#include <stdio.h> 

int main()
{
    Rectangle r1, r2;

    // 实例化对象
    Rectangle_ctor(&r1, 0, 2, 10, 15);
    Rectangle_ctor(&r2, -1, 3, 5, 8);

    printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r1.super), Shape_getY(&r1.super),
           r1.width, r1.height);
    printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r2.super), Shape_getY(&r2.super),
           r2.width, r2.height);

    // 注意,这里有两种方式,一是强转类型,二是直接使用成员地址
    Shape_moveBy((Shape *)&r1, -2, 3);
    Shape_moveBy(&r2.super, 2, -1);

    printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r1.super), Shape_getY(&r1.super),
           r1.width, r1.height);
    printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r2.super), Shape_getY(&r2.super),
           r2.width, r2.height);

    return 0;
}

输出结果:

Rect r1(x=0,y=2,width=10,height=15)
Rect r2(x=-1,y=3,width=5,height=8)
Rect r1(x=-2,y=5,width=10,height=15)
Rect r2(x=1,y=2,width=5,height=8)

4、多态

C++ 语言实现多态就是使用虚函数。在 C 语言里面,也可以实现多态。

现在,我们又要增加一个圆形,并且在 Shape 要扩展功能,我们要增加 area() 和 draw() 函数。但是 Shape 相当于抽象类,不知道怎么去计算自己的面积,更不知道怎么去画出来自己。而且,矩形和圆形的面积计算方式和几何图像也是不一样的。

下面让我们重新声明一下 Shape 类

#ifndef SHAPE_H
#define SHAPE_H

#include <stdint.h>

struct ShapeVtbl;
// Shape 的属性
typedef struct {
    struct ShapeVtbl const *vptr;
    int16_t x;
    int16_t y;
} Shape;

// Shape 的虚表
struct ShapeVtbl {
    uint32_t (*area)(Shape const * const me);
    void (*draw)(Shape const * const me);
};

// Shape 的操作函数,接口函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y);
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);
int16_t Shape_getX(Shape const * const me);
int16_t Shape_getY(Shape const * const me);

static inline uint32_t Shape_area(Shape const * const me)
{
    return (*me->vptr->area)(me);
}

static inline void Shape_draw(Shape const * const me)
{
    (*me->vptr->draw)(me);
}

Shape const *largestShape(Shape const *shapes[], uint32_t nShapes);
void drawAllShapes(Shape const *shapes[], uint32_t nShapes);

#endif /* SHAPE_H */

看下加上虚函数之后的类关系图

4.1 虚表和虚指针

虚表(Virtual Table)是这个类所有虚函数的函数指针的集合。

虚指针(Virtual Pointer)是一个指向虚表的指针。这个虚指针必须存在于每个对象实例中,会被所有子类继承。

在《Inside The C++ Object Model》的第一章内容中,有这些介绍。

4.2 在构造函数中设置vptr

在每一个对象实例中,vptr 必须被初始化指向其 vtbl。最好的初始化位置就是在类的构造函数中。事实上,在构造函数中,C++ 编译器隐式的创建了一个初始化的vptr。在 C 语言里面, 我们必须显示的初始化vptr。

下面就展示一下,在 Shape 的构造函数里面,如何去初始化这个 vptr。

#include "shape.h"
#include <assert.h>

// Shape 的虚函数
static uint32_t Shape_area_(Shape const * const me);
static void Shape_draw_(Shape const * const me);

// 构造函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y)
{
    // Shape 类的虚表
    static struct ShapeVtbl const vtbl =
    {
       &Shape_area_,
       &Shape_draw_
    };
    me->vptr = &vtbl;
    me->x = x;
    me->y = y;
}

void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy)
{
    me->x += dx;
    me->y += dy;
}

int16_t Shape_getX(Shape const * const me)
{
    return me->x;
}
int16_t Shape_getY(Shape const * const me)
{
    return me->y;
}

// Shape 类的虚函数实现
static uint32_t Shape_area_(Shape const * const me)
{
    assert(0); // 类似纯虚函数
    return 0U; // 避免警告
}

static void Shape_draw_(Shape const * const me)
{
    assert(0); // 纯虚函数不能被调用
}

Shape const *largestShape(Shape const *shapes[], uint32_t nShapes)
{
    Shape const *s = (Shape *)0;
    uint32_t max = 0U;
    uint32_t i;
    for (i = 0U; i < nShapes; ++i)
    {
        uint32_t area = Shape_area(shapes[i]);// 虚函数调用
        if (area > max)
        {
            max = area;
            s = shapes[i];
        }
    }
    return s;
}

void drawAllShapes(Shape const *shapes[], uint32_t nShapes)
{
    uint32_t i;
    for (i = 0U; i < nShapes; ++i)
    {
        Shape_draw(shapes[i]); // 虚函数调用
    }
}

注释比较清晰,这里不再多做解释。

4.3 继承 vtbl 和 重载 vptr

上面已经提到过,基类包含 vptr,子类会自动继承。但是,vptr 需要被子类的虚表重新赋值。并且,这也必须发生在子类的构造函数中。下面是 Rectangle 的构造函数。

#include "rect.h"
#include <stdio.h> 

// Rectangle 虚函数
static uint32_t Rectangle_area_(Shape const * const me);
static void Rectangle_draw_(Shape const * const me);

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height)
{
    static struct ShapeVtbl const vtbl =
    {
        &Rectangle_area_,
        &Rectangle_draw_
    };
    Shape_ctor(&me->super, x, y); // 调用基类的构造函数
    me->super.vptr = &vtbl;           // 重载 vptr
    me->width = width;
    me->height = height;
}

// Rectangle's 虚函数实现
static uint32_t Rectangle_area_(Shape const * const me)
{
    Rectangle const * const me_ = (Rectangle const *)me; //显示的转换
    return (uint32_t)me_->width * (uint32_t)me_->height;
}

static void Rectangle_draw_(Shape const * const me)
{
    Rectangle const * const me_ = (Rectangle const *)me; //显示的转换
    printf("Rectangle_draw_(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(me), Shape_getY(me), me_->width, me_->height);
}

4.4 虚函数调用

有了前面虚表(Virtual Tables)和虚指针(Virtual Pointers)的基础实现,虚拟调用(后期绑定)就可以用下面代码实现了。

uint32_t Shape_area(Shape const * const me)
{
    return (*me->vptr->area)(me);
}

这个函数可以放到.c文件里面,但是会带来一个缺点就是每个虚拟调用都有额外的调用开销。为了避免这个缺点,如果编译器支持内联函数(C99)。我们可以把定义放到头文件里面,类似下面:

static inline uint32_t Shape_area(Shape const * const me)
{
    return (*me->vptr->area)(me);
}

如果是老一点的编译器(C89),我们可以用宏函数来实现,类似下面这样:

#define Shape_area(me_) ((*(me_)->vptr->area)((me_)))

看一下例子中的调用机制:

4.5 main.c

#include "rect.h"
#include "circle.h"
#include <stdio.h> 

int main()
{
    Rectangle r1, r2;
    Circle    c1, c2;
    Shape const *shapes[] =
    {
        &c1.super,
        &r2.super,
        &c2.super,
        &r1.super
    };
    Shape const *s;

    // 实例化矩形对象
    Rectangle_ctor(&r1, 0, 2, 10, 15);
    Rectangle_ctor(&r2, -1, 3, 5, 8);

    // 实例化圆形对象
    Circle_ctor(&c1, 1, -2, 12);
    Circle_ctor(&c2, 1, -3, 6);

    s = largestShape(shapes, sizeof(shapes)/sizeof(shapes[0]));
    printf("largetsShape s(x=%d,y=%d)\n", Shape_getX(s), Shape_getY(s));

    drawAllShapes(shapes, sizeof(shapes)/sizeof(shapes[0]));

    return 0;
}

输出结果:

largetsShape s(x=1,y=-2)
Circle_draw_(x=1,y=-2,rad=12)
Rectangle_draw_(x=-1,y=3,width=5,height=8)
Circle_draw_(x=1,y=-3,rad=6)
Rectangle_draw_(x=0,y=2,width=10,height=15)

5、总结

还是那句话,面向对象编程是一种方法,并不局限于某一种编程语言。用 C 语言实现封装、单继承,理解和实现起来比较简单,多态反而会稍微复杂一点,如果打算广泛的使用多态,还是推荐转到 C++ 语言上,毕竟这层复杂性被这个语言给封装了,你只需要简单的使用就行了。但并不代表,C 语言实现不了多态这个特性。

以上就是C语言实现面向对象的方法详解的详细内容,更多关于C语言实现面向对象的资料请关注我们其它相关文章!

(0)

相关推荐

  • 详解C语言面向对象编程中的封装

    目录 前言 一.面向对象基本概念 什么是对象? 对象与类 面向对象的编程方式 二.C语言实现面向对象 面向对象的三大特征 面向对象之封装 简介 代码实现–基础版 代码实现-进阶版 总结 前言 面向对象是一种思维方式,基本上用什么语言都是可以实现的.C语言的编程方式一般是面向过程的,但是也是可以实现面向对象的.对象是什么?什么又是面向对象?面向对象的三大特性又怎么实现,且听我细细道来. 一.面向对象基本概念 什么是对象? 此对象非彼对象,虽然有时候此对象又可以是你脑袋中的对象,那让我们从我们误解的

  • 纯c语言实现面向对象分析与示例分享

    C语言的对象化模型面向对象的特征主要包括:.封装,隐藏内部实现.继承,复用现有代码.多态,改写对象行为1.1  封装封装是一种信息隐蔽技术,它体现于类的说明,是对象的重要特性.封装使数据和加工该数据的方法(函数)封装为一个整体,以实现独立性很强的模块,使得用户只能见到对象的外特性(对象能接受哪些消息,具有那些处理能力),而对象的内特性(保存内部状态的私有数据和实现加工能力的算法)对用户是隐蔽的.封装的目的在于把对象的设计者和对象者的使用分开,使用者不必知晓行为实现的细节,只须用设计者提供的消息来

  • C语言实现面向对象的方法详解

    目录 1.引言 2.封装 3.继承 4.多态 4.1 虚表和虚指针 4.2 在构造函数中设置vptr 4.3 继承 vtbl 和 重载 vptr 4.4 虚函数调用 4.5 main.c 5.总结 1.引言 面向对象编程(OOP)并不是一种特定的语言或者工具,它只是一种设计方法.设计思想.它表现出来的三个最基本的特性就是封装.继承与多态.很多面向对象的编程语言已经包含这三个特性了,例如 Smalltalk.C++.Java.但是你也可以用几乎所有的编程语言来实现面向对象编程,例如 ANSI-C.

  • C语言memset函数使用方法详解

    C语言memset函数使用方法详解 一.函数原形   void *  memset(void*s, int ch,size_t n) 二.函数作用  将以s内存地址为首的连续n个字节的内容置成ch,一般用来对大量结构体和数组进行清零 三.常见错误 1.搞反了 ch 和 n的位置 对char[20]清零,一定是 memset(a,0,20); 2.过度使用memset 3.其实这个错误严格来讲不能算用错memset,但是它经常在使用memset的场合出现 int fun(strucy someth

  • C语言system函数使用方法详解

    目录 函数接口 作用 返回值 测试代码 参数 MODE命令 color命令 函数接口 _DCRTIMP int __cdecl system( _In_opt_z_ char const* _Command ); system函数已经被收录在标准c库中,头文件为<stdlib.h> 作用 执行系统命令调用命令处理器来执行命令. 如果命令是空指针,则该函数只检查是否有命令处理器可以被此函数使用. 命令非空则调用命令的效果取决于系统和库的实现,并可能导致程序以非标准的方式运行或终止. 补充: 执行

  • Go语言HttpRouter路由使用方法详解

    HttpRouter是一个轻量级但却非常高效的multiplexer.手册: https://godoc.org/github.com/julienschmidt/httprouter https://github.com/julienschmidt/httprouter 用法示例 package main import ( "fmt" "github.com/julienschmidt/httprouter" "net/http" "

  • C语言 操作符#与##使用方法详解

    目录 一.# 运算符 二.## 运算符 三.小结 一.# 运算符 # 运算符用于在预处理期将宏参数转换为字符串 # 的转换作用是在预处理期完成的,因此只在宏定义中有效 编译器不知道 # 的转换作用 用法: #define STRING(x) #x printf("%s\n",STRING(Hello World!)); 下面通过一个示例感受一下: test.c: #include <stdio.h> #define STRING(x) #x int main() { pri

  • C语言qsort函数使用方法详解

    目录 1.qsort函数 1.1qsort函数功能 1.2参数介绍 2.qsort函数功能测试 3.冒泡排序思想模拟实现qsort 1.qsort函数 void qsort (void* base, size_t num, size_t size, int (compar)(const void,const void*)); 1.1qsort函数功能 可以排序任何数据类型 对 所指向的数组元素进行排,使用函数确定顺序. 此函数使用的排序算法通过调用指定函数并指向元素的指针作为参数来比较元素. 该

  • C语言单链表实现方法详解

    本文实例讲述了C语言单链表实现方法.分享给大家供大家参考,具体如下: slist.h #ifndef __SLIST_H__ #define __SLIST_H__ #include<cstdio> #include<malloc.h> #include<assert.h> typedef int ElemType; typedef struct Node { //定义单链表中的结点信息 ElemType data; //结点的数据域 struct Node *next

  • Go语言的Channel遍历方法详解

    先来看看基本的定义: channel是Go语言中的一个核心类型,可以把它看成管道.并发核心单元通过它就可以发送或者接收数据进行通讯,这在一定程度上又进一步降低了编程的难度. channel是一个数据类型,主要用来解决go程的同步问题以及协程之间数据共享(数据传递)的问题. (1)channle 本质上是一个数据结构--(队列),数据是先进先出. (2)具有线程安全机制,多个go程访问时,不需要枷锁,也就是说channel本身是线程安全的. (3)channel是有类型的,如一个string类型的

  • Go语言基础语法之结构体及方法详解

    结构体类型可以用来保存不同类型的数据,也可以通过方法的形式来声明它的行为.本文将介绍go语言中的结构体和方法,以及"继承"的实现方法. 结构体类型 结构体类型(struct)在go语言中具有重要地位,它是实现go语言面向对象编程的重要工具.go语言中没有类的概念,可以使用结构体实现类似的功能,传统的OOP(Object-Oriented Programming)思想中的继承在go中可以通过嵌入字段的方式实现. 结构体的声明与定义: // 使用关键字 type 和 struct 定义名字

  • GO语言中的方法值和方法表达式的使用方法详解

    Go语言也称 Golang,兼具效率.性能.安全.健壮等特性. Go语言从底层原生支持并发,无须第三方库.开发者的编程技巧和开发经验就可以轻松搞定.本文重点给大家介绍go 方法值和方法表达式的知识. 手册上关于这块的解释感觉不是很详细清晰,经过几个示例自己总结了下这块的用法. 方法表达式:说简单点,其实就是方法对象赋值给变量. 这里有两种使用方式: 1)方法值:隐式调用, struct实例获取方法对象 2)  方法表达式:显示调用, struct类型获取方法对象, 需要传递struct实例对象作

随机推荐