C++类模板与函数模板基础详细讲解

目录
  • 函数模板
  • 类模板
  • 总结

函数模板

当我们想要定义一个可以支持泛型的函数时,就要采用函数模板的方式了。所谓泛型就是可以支持多种类型的操作,比如我们定义一个compare操作,他可以根据传递给他的参数类型动态调用对应的函数版本,实现多种类型的比较。

template <typename T>
int compare(const T &v1, const T &v2)
{
    if (v1 < v2)
        return -1;
    if (v2 < v1)
        return 1;
    return 0;
}

比较函数是一个模板函数,它支持T类型的对象比较,模板函数定义的规则是用template 声明模板的类型为T,然后用T做参数即可。

调用的规则传递实参就可以了,前提是实参的类型要支持比较大小,如果是类的类型我们可以重载比较运算符。

 int res = compare(3, 4);
    cout << "compare(3,4) res is " << res << endl;
    vector<int> v1 = {1, 3, 5};
    vector<int> v2 = {2, 4};
    res = compare(v1, v2);
    cout << "compare(v1, v2) res is " << res << endl;

我们分别传递了int类型和vector类型的参数作为compare比较的参数。模板函数也支持多个类型,我们可以再定义一个支持多个参数类型的模板函数

template <typename T, typename U>
int printData(const T &t, const U &u)
{
    cout << "t is " << t << endl;
    cout << "u is " << u << endl;
}

调用规则和上边类似,传递两个不同类型即可

 printData(3.4, "hello world");

模板函数也支持非参数类型,用已知类型定义变量

template <unsigned N, unsigned M>
int compareArray(const char (&p1)[N], const char (&p2)[M])
{
    return strcmp(p1, p2);
}

compareArray的模板里用了已知类型unsigned定义了两个变量N和M。

调用的时候N和M会自动根据实参获取值

 res = compareArray("hello zack", "nice to meet u");
    cout << "compareArray("
         << "hello zack "
         << ", nice to meet u"
         << ") res is " << res << endl;

M和N就是传递的两个数组的长度。

类模板

我们实现一个模板类,使其支持类似vector的操作,包括push_back, empty, back, 以及pop_back,取索引[]操作等。

//定义模板类型的blob
template <typename T>
class Blob
{
public:
    typedef T value_type;
    typedef typename std::vector<T>::size_type size_type;
    //构造函数
    Blob()
    {
        data = make_shared<std::vector<T>>();
    }
    Blob(std::initializer_list<T> il)
    {
        data = make_shared<std::vector<T>>(il);
        // for (const T &m : il)
        // {
        //     data->push_back(m);
        // }
    }
    // Blob 中元素数目
    size_type size() const { return data->size(); }
    bool empty() const { return data->empty(); }
    //添加和删除元素
    void push_back(const T &t) { data->push_back(t); }
    //移动版本的push_back
    void push_back(const T &&t) { data->push_back(std::move(t)); }
    //删除元素
    void pop_back();
    //元素访问
    T &back();
    T &operator[](size_type i);
private:
    std::shared_ptr<std::vector<T>> data;
    //校验数据是否有效
    void check(size_type i, const std::string &msg) const;
};

我们在类外实现check, pop_back, back, 以及[]操作。

template <typename T>
void Blob<T>::check(size_type i, const std::string &msg) const
{
    if (i >= data->size())
        throw std::out_of_range(msg);
}
template <typename T>
void Blob<T>::pop_back()
{
    if (data->empty())
    {
        return;
    }
    data->pop_back();
}
template <typename T>
T &Blob<T>::back()
{
    return data->back();
}
template <typename T>
T &Blob<T>::operator[](size_type i)
{
    check(i, "index out of range");
    return (*data)[i];
}

每一个类的成员函数在类外实现时都要声明template。

类模板的使用如下

void use_classtemp()
{
    Blob<int> ia;
    Blob<int> ia2 = {0, 1, 2, 3, 5};
    Blob<string> ia3 = {"hello ", "zack", "nice"};
    for (size_t i = 0; i < ia2.size(); i++)
    {
        ia2[i] = i * i;
    }
    for (size_t i = 0; i < ia2.size(); i++)
    {
        cout << ia2[i] << endl;
    }
    for (size_t i = 0; i < ia3.size(); i++)
    {
        string_upper(ia3[i]);
    }
    for (size_t i = 0; i < ia3.size(); i++)
    {
        cout << ia3[i] << endl;
    }
    const auto &data = ia3.back();
    cout << data << endl;
    ia3.pop_back();
    const auto &data2 = ia3.back();
    cout << data2 << endl;
}

总结

源码链接

视频链接

到此这篇关于C++类模板与函数模板基础详细讲解的文章就介绍到这了,更多相关C++类模板与函数模板内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++模板基础之函数模板与类模板实例详解

    泛型编程  如果让你编写一个函数,用于两个数的交换.在C语言中,我们会用如下方法: // 交换两个整型 void Swapi(int* p1, int* p2) { int tmp = *p1; *p1 = *p2; *p2 = tmp; } // 交换两个双精度浮点型 void Swapd(double* p1, double* p2) { double tmp = *p1; *p1 = *p2; *p2 = tmp; }  因为C语言不支持函数重载,所以用于交换不同类型变量的函数的函数名是不

  • C++ 类模板、函数模板全特化、偏特化的使用

    一.类模板全特化.偏特化 #pragma once #include <iostream> #include <map> template <typename T, typename U> class TC { public: TC() { std::cout << "泛化版本构造函数" << std::endl; } void funtest() { std::cout << "泛化版本成员函数&quo

  • C++ 函数模板和类模板详情

    目录 1. 泛型编程 2. 函数模板 2.1 函数模板概念 2.2 函数模板格式化 2.3 函数模板原理 2.4 函数模板实例化 2.5 模板参数的匹配原理 3. 类模板 3.1 类模板的定义格式 3.2 类模板的实例化 1. 泛型编程 如何实现一个通用的交换函数? 在C++中可以用到函数重载 class A { public: void Swap(int& x1,int& x2) { int temp=x1; x1=x2; x2=temp; } void Swap(double&

  • 浅析C++函数模板和类模板

    目录 一.函数模板 1.函数模板的定义和使用 2.函数模板的编译原理 3.函数模板的声明 二.类模板 1.类模板的定义和使用 2.类模板的编译原理 3.类模板的继承和派生 C++语言全盘继承了C语言的标准库,其中包换非常丰富的系统函数,例如输入/输出函数.数学函数.字符串处理函数和动态内存分配函数等.C++语言另外又增加了一些新的库,我们把C++语言新增的这部分库称为C++标准库.C++语言的模板技术包括函数模板和类模板.模板技术是一种代码重用技术,函数和类是C++语言中两种主要的重用代码形式.

  • C++函数模板与类模板实例解析

    本文针对C++函数模板与类模板进行了较为详尽的实例解析,有助于帮助读者加深对C++函数模板与类模板的理解.具体内容如下: 泛型编程(Generic Programming)是一种编程范式,通过将类型参数化来实现在同一份代码上操作多种数据类型,泛型是一般化并可重复使用的意思.泛型编程最初诞生于C++中,目的是为了实现C++的STL(标准模板库). 模板(template)是泛型编程的基础,一个模板就是一个创建类或函数的蓝图或公式.例如,当使用一个vector这样的泛型类型或者find这样的泛型函数

  • C++类模板与函数模板基础详细讲解

    目录 函数模板 类模板 总结 函数模板 当我们想要定义一个可以支持泛型的函数时,就要采用函数模板的方式了.所谓泛型就是可以支持多种类型的操作,比如我们定义一个compare操作,他可以根据传递给他的参数类型动态调用对应的函数版本,实现多种类型的比较. template <typename T> int compare(const T &v1, const T &v2) { if (v1 < v2) return -1; if (v2 < v1) return 1;

  • C++函数模板与重载解析超详细讲解

    目录 1.快速上手 2.重载的模板 3.模板的局限性 4.显式具体化函数 5.实例化和具体化 6.重载解析 6.1 概览 6.2 完全匹配中的三六九等 6.3 总结 7.模板的发展 1.快速上手 函数模板是通用的函数描述,也就是说,它们使用泛型来定义函数. #include<iostream> using namespace std; template <typename T> void Swap(T &a,T &b);//模板原型 struct apple{ st

  • C语言全部内存操作函数的实现详细讲解

    memcpy内存拷贝函数 void* memcpy(void* destination, const void* source, size_t num); memcpy函数从source的位置开始向后拷贝num个字节的数据到destination的内存位置 这个函数在遇到\0的时候并不会停下来 如果source和destination有任何的重叠,复制的结果都是未定义的 使用方法: #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #in

  • Android同步异步任务与多线程及Handler消息处理机制基础详细讲解

    目录 一.同步与异步 Android中的多线程 Android中的多线程与主线程与子线程 Handler异步通信系统 使用新线程计算质数 一.同步与异步 同步的执行任务:在执行程序时,如果没有收到执行结果,就一直等,不继续往下执行,直到收到执行结果,才接着往下执行. 异步的执行任务:在执行程序时,如果遇到需要等待的任务,就另外开辟一个子线程去执行它,自己继续往下执行其他程序.子线程有结果时,会将结果发送给主线程 Android中的多线程 线程:通俗点讲就是一个执行过程.多线程自然就是多个执行过程

  • C语言函数声明以及函数原型超详细讲解示例

    C语言代码由上到下依次执行,原则上函数定义要出现在函数调用之前,否则就会报错.但在实际开发中,经常会在函数定义之前使用它们,这个时候就需要提前声明. 所谓声明(Declaration),就是告诉编译器我要使用这个函数,你现在没有找到它的定义不要紧,请不要报错,稍后我会把定义补上. 函数声明的格式非常简单,相当于去掉函数定义中的函数体,并在最后加上分号;,如下所示: dataType functionName( dataType1 param1, dataType2 param2 ... ); 也

  • C++模板非类型形参的详细讲解

    前言 关于模板的非类型形参,网上有很多内容,C++primer只有大概一页的阐述,但是都不够清晰详细.下面我尽可能从自己的角度去给大家描述一下非类型形参的相关细节.如果想进一步理解非类型形参以及模板内容可以阅读C++template这本书,在4.1节,8.3.3节,13.2节都有相关解释. 模板除了定义类型参数,我们还可以在模板定义非类型参数. 什么是非类型形参?顾名思义,就是表示一个固定类型的常量而不是一个类型. 先举一个简单的例子(模板类与模板函数都可以用非类型形参) //例子1: temp

  • python文件操作的基础详细讲解(write、read、readlines、readline)

    目录 前言 1 文件操作 1.1 文件打开与关闭 1.1.1 打开文件 1.1.2 关闭文件 2 文件读写 2.1 写数据(write) 2.2 读数据(read) 2.3 读数据(readlines) 2.3 读数据(readline) 3 文件的相关操作 3.1 文件重命名 3.2 删除文件 3.3 创建文件夹 3.4 获取当前目录 3.5 改变默认目录 补充:文件综合操作实例 总结 前言 python 文件操作.文件读写(write.read.readlines.readline).文件的

  • C++ Template 基础篇(一):函数模板详解

    Template所代表的泛型编程是C++语言中的重要的组成部分,我将通过几篇blog对这半年以来的学习做一个系统的总结,本文是基础篇的第一部分. 为什么要有泛型编程 C++是一门强类型语言,所以无法做到像动态语言(python javascript)那样子,编写一段通用的逻辑,可以把任意类型的变量传进去处理.泛型编程弥补了这个缺点,通过把通用逻辑设计为模板,摆脱了类型的限制,提供了继承机制以外的另一种抽象机制,极大地提升了代码的可重用性. 注意:模板定义本身不参与编译,而是编译器根据模板的用户使

随机推荐