Python算法思想集结深入理解动态规划

目录
  • 1. 概述
    • 什么是重叠子问题
    • 动态规划与分治算法的区别
    • 什么最优子结构
  • 2. 流程
    • 2.1 是否存在子问题
    • 2.2 是否存在重叠子问题
      • 怎么解决重叠子问题
    • 2.3 状态转移
  • 3.总结

1. 概述

动态规划算法应用非常之广泛。

对于算法学习者而言,不跨过动态规划这道门,不算真正了解算法。

初接触动态规划者,理解其思想精髓会存在一定的难度,本文将通过一个案例,抽丝剥茧般和大家聊聊动态规划。

动态规划算法有 3 个重要的概念:

  • 重叠子问题。
  • 最优子结构。
  • 状态转移。

只有吃透这 3 个概念,才叫真正理解什么是动态规划。

什么是重叠子问题

动态规划和分治算法有一个相似之处。

将原问题分解成相似的子问题,在求解的过程中通过子问题的解求出原问题的解。

动态规划与分治算法的区别

  • 分治算法的每一个子问题具有完全独立性,只会被计算一次。
  • 二分查找是典型的分治算法实现,其子问题是把数列缩小后再二分查找,每一个子问题只会被计算一次。
  • 动态规划经分解得到的子问题往往不是互相独立的,有些子问题会被重复计算多次,这便是重叠子问题。
  • 同一个子问题被计算多次,完全是没有必要的,可以缓存已经计算过的子问题,再次需要子问题结果时只需要从缓存中获取便可。这便是动态规划中的典型操作,优化重叠子问题,通过空间换时间的优化手段提高性能。

重叠子问题并不是动态规划的专利,重叠子问题是一个很普见的现象。

什么最优子结构

最优子结构是动态规划的必要条件。因为动态规划只能应用于具有最优子结构的问题,在解决一个原始问题时,是否能套用动态规划算法,分析是否存在最优子结构是关键。

那么!到底什么是最优子结构?概念其实很简单,局部最优解能决定全局最优解。

如拔河比赛中。如果 A队中的每一名成员的力气都是每一个班上最大的,由他们组成的拔河队毫无疑问,一定是也是所有拔河队中实力最强的。

如果把求解哪一个团队的力量最大当成原始问题,则每一个人的力量是否最大就是子问题,则子问题的最优决定了原始问题的最优。

所以,动态规划多用于求最值的应用场景。

不是说有 3 个概念吗!

不急,先把状态转移这个概念放一放,稍后再解释。

2. 流程

下面以一个案例的解决过程描述使用动态规划的流程。

问题描述:小兔子的难题。

有一只小兔子站在一片三角形的胡萝卜地的入口,如下图所示,图中的数字表示每一个坑中胡萝卜的数量,小兔子每次只能跳到左下角或者右下角的坑中,请问小兔子怎么跳才能得到最多数量的胡萝卜?

首先这个问题是求最值问题, 是否能够使用动态规划求解,则需要一步一步分析,看是否有满足使用动态规划的条件。

2.1 是否存在子问题

先来一个分治思想:思考或观察是否能把原始问题分解成相似的子问题,把解决问题的希望寄托在子问题上。

那么,针对上述三角形数列,是否存在子问题?

现在从数字7出发,兔子有 2 条可行路线。

为了便于理解,首先模糊第 3 行后面的数字或假设第 3行之后根本不存在。

那么原始问题就变成:

  • 先分别求解路线 1 和路线 2上的最大值。路线 1的最大值为 3,路线 2上的最大值是8。
  • 然后求解出路线 1和路线 2两者之间的最大值 8。 把求得的结果和出发点的数字 7 相加,7+8=15 就是最后答案。
  • 只有 2 行时,兔子能获得的最多萝卜数为 15,肉眼便能看的出来。

前面是假设第 3 行之后都不存在,现在把第 3 行放开,则路线 1 路线2的最大值就要发生变化,但是,对于原始问题来讲,可以不用关心路线 1 和路线 2 是怎么获取到最大值,交给子问题自己处理就可以了。

反正,到时从路线 1 和路线 2 的结果中再选择一个最大值就是。

把第 3 行放开后,路线 1 就要重新更新最大值,如上图所示,路线 1也可以分解成子问题,分解后,也只需要关心子问题的返回结果。

  • 路线 1 的子问题有 2个,路线 1_1和路线1_2。求解 2 个子问题的最大值后,再在 2 个子问题中选择最大值8,最后路线 1的最大值为3+8=11。
  • 路线 2 的子问题有 2个,路线 2_1和路线2_2。求解 2 个子问题的最大值后,再在 2 个子问题中选择最大值2,最后路线 2的最大值为8+2=10。

当第 3 行放开后,更新路线 1和路线2的最大值,对于原始问题而言,它只需要再在 2 个子问题中选择最大值 11,最终问题的解为7+11=18。

如果放开第 4 行,将重演上述的过程。和原始问题一样,都是从一个点出发,求解此点到目标行的最大值。所以说,此问题是存在子问题的。

并且,只要找到子问题的最优解,就能得到最终原始问题的最优解。不仅存在子问题,而且存在最优子结构。

显然,这很符合递归套路:递进给子问题,回溯子问题的结果。

  • 使用二维数列表保存三角形数列中的所有数据。a=[[7],[3,8],[8,1,2],[2,7,4,4],[4,5,2,6,5]]。
  • 原始问题为 f(0,0)从数列的(0,0)出发,向左下角和右下角前行,一直找到此路径上的数字相加为最大。
  • f(0,0)表示以第 1 行的第 1 列数字为起始点。
  • 分解原始问题 f(0,0)=a(0,0)+max(f(1,0)+f(1,1))。
  • 因为每一个子问题又可以分解,让表达式更通用 f(i,j)=a(i,j)+max(f(i+1,j)+f(i+1,j+1))。
  • (i+1,j)表示 (i,j)的左下角,(i+1,j+1)表示 (i,j)的右下角,

编码实现:

# 已经数列
nums = [[7], [3, 8], [8, 1, 2], [2, 7, 4, 4], [4, 5, 2, 6, 5]]
# 递归函数
def get_max_lb(i, j):
    if i == len(nums) - 1:
        # 递归出口
        return nums[i][j]
    # 分解子问题
    return nums[i][j] + max(get_max_lb(i + 1, j), get_max_lb(i + 1, j + 1))
# 测试
res = get_max_lb(0, 0)
print(res)
'''
输出结果
30
'''

不是说要聊聊动态规划的流程吗!怎么跑到递归上去了。

其实所有能套用动态规划的算法题,都可以使用递归实现,因递归平时接触多,从递归切入,可能更容易理解。

2.2 是否存在重叠子问题

先做一个实验,增加三角形数的行数,也就是延长路径线。

import random
nums = []
# 递归函数
def get_max_lb(i, j):
    if i == len(nums) - 1:
        return nums[i][j]
    return nums[i][j] + max(get_max_lb(i + 1, j), get_max_lb(i + 1, j + 1))
# 构建 100 行的二维列表
for i in range(100):
    nums.append([])
    for j in range(i + 1):
        nums[i].append(random.randint(1, 100))
res = get_max_lb(0, 0)
print(res)

执行程序后,久久没有得到结果,甚至会超时。原因何在?如下图:

路线1_2和路线2_1的起点都是从同一个地方(蓝色标注的位置)出发。显然,从数字 1(蓝色标注的数字)出发的这条路径会被计算 2 次。在上图中被重复计算的子路径可不止一条。

**这便是重叠子问题!**子问题被重复计算。

当三角形数列的数据不是很多时,重复计算对整个程序的性能的影响微不足道 。如果数据很多时,大量的重复计算会让计算机性能低下,并可能导致最后崩溃。

因为使用递归的时间复杂度为O(2^n)。当数据的行数变多时,可想而知,性能有多低下。

怎么解决重叠子问题

答案是:使用缓存,把曾经计算过的子问题结果缓存起来,当再次需要子问题结果时,直接从缓存中获取,就没有必要再次计算。

这里使用字典作为缓存器,以子问题的起始位置为关键字,以子问题的结果为值。

import random
def get_max_lb(i, j):
    if i == len(nums) - 1:
        return nums[i][j]
    left_max = None
    right_max = None
    if (i + 1, j) in dic.keys():
        # 检查缓存中是否存在子问题的结果
        left_max = dic[i + 1, j]
    else:
        # 缓存中没有,才递归求解
        left_max = get_max_lb(i + 1, j)
        # 求解后的结果缓存起来
        dic[(i + 1, j)] = left_max
    if (i + 1, j + 1) in dic.keys():
        right_max = dic[i + 1, j + 1]
    else:
        right_max = get_max_lb(i + 1, j + 1)
        dic[(i + 1, j + 1)] = right_max
    return nums[i][j] + max(left_max, right_max)
# 已经数列
nums = []
# 缓存器
dic = {}
for i in range(100):
    nums.append([])
    for j in range(i + 1):
        nums[i].append(random.randint(1, 100))
# 递归调用
res = get_max_lb(0, 0)
print(res)

因使用随机数生成数据,每次运行结果不一样。但是,每次运行后的速度是非常给力的。

当出现重叠子问题时,可以缓存曾经计算过的子问题。

好 !现在到了关键时刻,屏住呼吸,从分析缓存中的数据开始。

使用递归解决问题,从结构上可以看出是从上向下的一种处理机制。所谓从上向下,也就是由原始问题开始一路去寻找答案。从本题来讲,就是从第一行一直找到最后一行,或者说从未知找到``已知`。

根据递归的特点,可知缓存数据的操作是在回溯过程中发生的。

当再次需要调用某一个子问题时,这时才有可能从缓存中获取到已经计算出来的结果。缓存中的数据是每一个子问题的结果,如果知道了某一个子问题,就可以通过子问题计算出父问题。

这时,可能就会有一个想法?

从已知找到未知。

任何一条路径只有到达最后一行后才能知道最后的结果。可以认为,最后一行是已知数据。先缓存最后一行,那么倒数第 2 行每一个位置到最后一行的路径的最大值就可以直接求出来。

同理,知道了倒数第 2 行的每一个位置的路径最大值,就可以求解出倒数第 3行每一个位置上的最大值。以此类推一直到第 1 行。

天呀!多完美,还用什么递归。

可以认为这种思想便是动态规划的核心:自下向上。

2.3 状态转移

还差最后一步,就能把前面的递归转换成动态规划实现。

什么是状态转移?

前面分析从最后 1 开始求最大值过程,是不是有点像田径场上的多人接力赛跑,第 1 名运动力争跑第 1,把状态转移给第 2名运动员,第 2名运动员持续保持第 1,然后把状态转移给第 3运动员,第 3名运动员也保持他这一圈的第 1,一至到最后一名运动员,都保持自己所在那一圈中的第 1。很显然最后结果,他们这个团队一定是第 1名。

把子问题的值传递给另一个子问题,这便是状态转移。当然在转移过程中,一定会存在一个表达式,用来计算如何转移。

用来保存每一个子问题状态的表称为 dp 表,其实就是前面递归中的缓存器。

用来计算如何转移的表达式,称为状态转移方程式。

有了上述的这张表,就可以使用动态规划自下向上的方式解决“兔子的难题”这个问题。

nums = [[7], [3, 8], [8, 1, 2], [2, 7, 4, 4], [4, 5, 2, 6, 5]]
# dp列表
dp = []
idx = 0
# 从最后一行开始
for i in range(len(nums) - 1, -1, -1):
    dp.append([])
    for j in range(len(nums[i])):
        if i == len(nums) - 1:
            # 最后一行缓存于状态转移表中
            dp[idx].append(nums[i][j])
        else:
            dp[idx].append(nums[i][j] + max(dp[idx - 1][j], dp[idx - 1][j + 1]))
    idx += 1
print(dp)
'''
输出结果:
[[4, 5, 2, 6, 5], [7, 12, 10, 10], [20, 13, 12], [23, 21], [30]]
'''

程序运行后,最终输出结果和前面手工绘制的dp表中的数据一模一样。

其实动态规划实现是前面递归操作的逆过程。时间复杂度是O(n^2)。

并不是所有的递归操作都可以使用动态规划进行逆操作,只有符合动态规划条件的递归操作才可以。

上述解决问题时,使用了一个二维列表充当dp表,并保存所有的中间信息。

思考一下,真的有必要保存所有的中间信息吗?

在状态转移过程中,我们仅关心当前得到的状态信息,曾经的状态信息其实完全可以不用保存。

所以,上述程序完全可以使用一个一维列表来存储状态信息。

nums = [[7], [3, 8], [8, 1, 2], [2, 7, 4, 4], [4, 5, 2, 6, 5]]
# dp表
dp = []
# 临时表
tmp = []
# 从最后一行开始
for i in range(len(nums) - 1, -1, -1):
    # 把上一步得到的状态数据提出来
    tmp = dp.copy()
    # 清除 dp 表中原来的数据,准备保存最新的状态数据
    dp.clear()
    for j in range(len(nums[i])):
        if i == len(nums) - 1:
            # 最后一行缓存于状态转移表中
            dp.append(nums[i][j])
        else:
            dp.append(nums[i][j] + max(tmp[j], tmp[j + 1]))
print(dp)
'''
输出结果:
[30]
'''

3.总结

动态规划问题一般都可以使用递归实现,递归是一种自上向下的解决方案,而动态规划是自下向上的解决方案,两者在解决同一个问题时的思考角度不一样,但本质是一样的。

并不是所有的递归操作都能转换成动态规划,是否能使用动态规划算法,则需要原始问题符合最优子结构和重叠子问题这 2 个条件。在使用动态规划过程中,找到状态转移表达式是关键。

以上就是Python算法思想集结深入理解动态规划的详细内容,更多关于Python算法动态规划的资料请关注我们其它相关文章!

(0)

相关推荐

  • python实现对求解最长回文子串的动态规划算法

    基于Python实现对求解最长回文子串的动态规划算法,具体内容如下 1.题目 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: "aba"也是一个有效答案. 示例 2: 输入: "cbbd" 输出: "bb" 2.求解 对于暴力求解在这里就不再骜述了,着重介绍如何利用动态规划算法进行求解. 关于动态规划的含

  • python动态规划算法实例详解

    如果大家对这个生僻的术语不理解的话,那就先听小编给大家说个现实生活中的实际案例吧,虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?这么一个过程也可以称之为动态规划算法,下面就来看下详细内容吧. 从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项 代码如下: #

  • Python动态规划实现虚拟机部署的算法思想

    声明 本文章为个人拙见,仅仅提供参考,不一定正确,各位大佬可以发表自己的意见. 题目描述 考虑到在虚拟机部署中资源提供商通常希望自己的收益最大化,现假设有一台宿主机,共有x个cpu和y GB的内存,用户可以采取自己报价的方式向资源提供商申请使用虚拟机资源,譬如说付w元申请a个cpu和b GB内存的一台虚拟机.请你设计一个算法,让资源提供商可以合理地安排虚拟机,使得自己的收益最大化. 输入: n x y 2 4 200 4 2 150 - 说明,n表示共有n条用户报价申请,宿主机共有x个cpu和y

  • Python基于动态规划算法解决01背包问题实例

    本文实例讲述了Python基于动态规划算法解决01背包问题.分享给大家供大家参考,具体如下: 在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决.n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来: 然后自底向上实现,代码如下: def bag(n,c,w,v): re

  • Python基于动态规划算法计算单词距离

    本文实例讲述了Python基于动态规划算法计算单词距离.分享给大家供大家参考.具体如下: #!/usr/bin/env python #coding=utf-8 def word_distance(m,n): """compute the least steps number to convert m to n by insert , delete , replace . 动态规划算法,计算单词距离 >>> print word_distance("

  • Python算法思想集结深入理解动态规划

    目录 1. 概述 什么是重叠子问题 动态规划与分治算法的区别 什么最优子结构 2. 流程 2.1 是否存在子问题 2.2 是否存在重叠子问题 怎么解决重叠子问题 2.3 状态转移 3.总结 1. 概述 动态规划算法应用非常之广泛. 对于算法学习者而言,不跨过动态规划这道门,不算真正了解算法. 初接触动态规划者,理解其思想精髓会存在一定的难度,本文将通过一个案例,抽丝剥茧般和大家聊聊动态规划. 动态规划算法有 3 个重要的概念: 重叠子问题. 最优子结构. 状态转移. 只有吃透这 3 个概念,才叫

  • python算法深入理解风控中的KS原理

    目录 一.业务背景 二.直观理解区分度的概念 三.KS统计量的定义 四.KS计算过程及业务分析 KS常用的计算方法: 上标指标计算逻辑: 五.风控中选择KS的原因 例1:模糊性 例2:连续性 一.业务背景 在金融风控领域,常常使用KS指标来衡量评估模型的区分度(discrimination),这也是风控模型最为追求的指标之一.下面将从区分度概念.KS计算方法.业务指导意义.几何解析.数学思想等角度,对KS进行深入剖析. 二.直观理解区分度的概念 在数据探索中,若想大致判断自变量x对因变量y有没有

  • 15行Python代码带你轻松理解令牌桶算法

    在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做. 用令牌实现限速器 我们用1块令牌来代表发送1字节数据的资格,假设我们源源不断的发放令牌给程序,程

  • Java使用动态规划算法思想解决背包问题

    目录 动态规划算法 动态规划算法的思想 最优性原理 动态规划算法的三大特点 动态规划算法中的0/1背包问题 动态规划算法的优点 小结 动态规划算法 动态规划算法的思想 动态规划算法处理的对象是多阶段复杂决策问题,动态规划算法和分治算法类似,其基本思想也是将待求解问题分解成若干个子问题(阶段),然后分别求解各个子问题(阶段),最后将子问题的解组合起来得到原问题的解,但是与分治算法不同的是,子问题往往不是相互独立的,而是相互联系又相互区别的 动态规划算法问题求解的目标是获取导致问题最优解的最优决策序

  • Python闭包思想与用法浅析

    本文实例讲述了Python闭包思想与用法.分享给大家供大家参考,具体如下: 浅谈 python 的闭包思想 首先 python的闭包使用方法是:在方法A内添加方法B,然后return 方法B 注意,return的时候不要添加任何参数,包括() 这样,通过调用方法A 返回的是一个function 对象,如 demo=方法A 可以直接使用 demo(参数) 将调用方法B 这里不用关注方法B的方法名, 只需要关注参数就可以了,demo(参数) 这里的参数其实就是闭包的方法B的参数,可以多个参数或者元祖

  • Python算法之图的遍历

    本节主要介绍图的遍历算法BFS和DFS,以及寻找图的(强)连通分量的算法 Traversal就是遍历,主要是对图的遍历,也就是遍历图中的每个节点.对一个节点的遍历有两个阶段,首先是发现(discover),然后是访问(visit).遍历的重要性自然不必说,图中有几个算法和遍历没有关系?! [算法导论对于发现和访问区别的非常明显,对图的算法讲解地特别好,在遍历节点的时候给节点标注它的发现节点时间d[v]和结束访问时间f[v],然后由这些时间的一些规律得到了不少实用的定理,本节后面介绍了部分内容,感

  • python算法与数据结构之冒泡排序实例详解

    一.冒泡排序介绍 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 二.冒泡排序原理 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.这一步做完,最后的元素应该会是最大的数. 针对所有的

  • Python面向对象思想与应用入门教程【类与对象】

    本文实例讲述了Python面向对象思想与应用.分享给大家供大家参考,具体如下: 面向对象思想 1.面向对象的设计思想 面向对象是基于万物皆对象这个哲学观点. 2.面向对象和面向过程的区别 面向过程 在生活中: 它是一种看待问题的思维方式,在思考问题的时候,着眼问题是怎样一步一步解决的,然后亲力亲为去解决问题[类似于公司里的执行者]. 在程序中: ​ 代码是从上而下顺序执行,各个模块之间的关系尽可能简单,在功能上相对独立,程序的流程在写程序的时候就已经决定. 面向对象 在生活中: 它是另一种看待问

  • Python算法中的时间复杂度问题

    在实现算法的时候,通常会从两方面考虑算法的复杂度,即时间复杂度和空间复杂度.顾名思义,时间复杂度用于度量算法的计算工作量,空间复杂度用于度量算法占用的内存空间. 本文将从时间复杂度的概念出发,结合实际代码示例分析算法的时间复杂度. 渐进时间复杂度 时间复杂度是算法运算所消耗的时间,因为不同大小的输入数据,算法处理所要消耗的时间是不同的,因此评估一个算运行时间是比较困难的,所以通常关注的是时间频度,即算法运行计算操作的次数,记为T(n),其中n称为问题的规模. 同样,因为n是一个变量,n发生变化时

随机推荐