Python图像处理之简单画板实现方法示例

本文实例讲述了Python图像处理之简单画板实现方法。分享给大家供大家参考,具体如下:

Python图像处理也是依赖opencv的Python接口实现的,Python语言简单易懂,简洁明了。本次实现画板涂鸦,一个是在里面画矩形,还有画线。其他也都可以扩展,本案例只做例程,思路是对鼠标事件的处理,以及滚动条调节颜色处理。鼠标事件就包含有左键按下,以及释放事件的处理。

import cv2
import numpy as np
# null function
def nothing(x):
  pass
Drawing = False
Mode = True
IX,IY = -1,-1
def drawCircle(Event,X,Y,Flags,Param):
  R = cv2.getTrackbarPos('R','Image')
  G = cv2.getTrackbarPos('G','Image')
  B = cv2.getTrackbarPos('B','Image')
#get color value
  Color = (B,G,R);
  global IX,IY,Drawing,Mode
  if Event == cv2.EVENT_LBUTTONDOWN:
    Drawing = True
    IX,IY = X,Y
  elif Event == cv2.EVENT_MOUSEMOVE and Flags == cv2.EVENT_FLAG_LBUTTON:
    if Drawing == True:
      if Mode == True:
        cv2.rectangle(Img,(IX,IY),(X,Y),Color,-1)
      else:
        cv2.circle(Img,(X,Y),3,Color,-1);
  elif Event == cv2.EVENT_LBUTTONUP:
    Drawing = False
#create image with 3 chanels
Img = np.zeros((660,660,3),np.uint8)
#create window
cv2.namedWindow('Image')
#create track bar, range for 0~255
cv2.createTrackbar('R','Image',0,255,nothing)
cv2.createTrackbar('G','Image',0,255,nothing)
cv2.createTrackbar('B','Image',0,255,nothing)
#set mouse ack
cv2.setMouseCallback('Image',drawCircle)
while(1):
  cv2.imshow('Image',Img)
  k = cv2.waitKey(10)&0xFF
  #switch draw mode
  if k == ord('m'):
    Mode = not Mode
  elif k == 27:
    break
#you must destroy all of sources
cv2.destroyAllWindows()

最后的效果图如下:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python使用TensorFlow进行图像处理的方法

    一.图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1.tf.image.resize_nearest_neighbor():临界点插值 2.tf.image.resize_bilinear():双线性插值 3.tf.image.resize_bicubic():双立方插值算法 下面是示例代码: # encoding:utf-8 # 使用TensorFlow进行图片的放缩 import tensorflow as tf import cv2 import numpy

  • python使用pil进行图像处理(等比例压缩、裁剪)实例代码

    PIL中设计的几个基本概念 1.通道(bands):即使图像的波段数,RGB图像,灰度图像 以RGB图像为例: >>>from PIL import Image >>>im = Image.open('*.jpg') # 打开一张RGB图像 >>>im_bands = im.g etbands() # 获取RGB三个波段 >>>len(im_bands) >>>print im_bands[0,1,2] # 输出RG

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • python图像处理入门(一)

    一.环境 由于这学期开了图像处理这门课,所以想着在各种实验开始之前自己先动手试一下 图像处理那首先要配个环境嘛,配环境真的是我长久以来的噩梦了,每次都会出现奇奇怪怪的问题,首先上网查找了一下,opencv这个库还是用的比较多的,如果想要使用C++来做图像处理的话,那么使用visual studio搭配opencv是比较常见的,所以就照着网上的教程下载好了vs之后下载了opencv的包,将包导入指定的路径也设置好环境变量之后发现还是不行,怎么办呢?这个时候想到那还不如自己直接用python,一来现

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • python数字图像处理之高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot as plt from skimage import d

  • python数字图像处理实现直方图与均衡化

    在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image,nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from s

  • python数字图像处理之骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s

  • python图像处理之镜像实现方法

    本文实例讲述了python图像处理之镜像实现方法.分享给大家供大家参考.具体分析如下: 图像的镜像变化不改变图像的形状.图像的镜像变换分为三种:水平镜像.垂直镜像.对角镜像 设图像的大小为M×N,则 水平镜像可按公式 I = i J = N - j + 1 垂直镜像可按公式 I = M - i + 1 J = j 对角镜像可按公式 I = M - i + 1 J = N - j + 1 值得注意的是在OpenCV中坐标是从[0,0]开始的 所以,式中的 +1 在编程时需要改为 -1 这里运行环境

随机推荐