pandas object格式转float64格式的方法

在数据处理过程中

比如从CSV文件中导入数据

data_df = pd.read_csv("names.csv")

在处理之前一定要查看数据的类型

data_df.info()
*RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB* 

以上object , int64, 以及 float64 便是数据的类型。

如果我们需要对列数据进行相互之间的运算的吧,必须注意的一点是:

两列的数据类型是否是相同的!!

如果一个object类型与int64的类型相加,便会发生错误

错误提示可能如下:

TypeError: ufunc 'add' not contain a loop with signature matching types dtype('<U32') dtype('<U32') dtype('<U32')

此时的object类型可能是‘12.3'这样str格式的数字,如果要运算必须进行格式转换:

可采用如下方法(convert_objects):

dt_df = dt_df.convert_objects(convert_numeric=True)

亲测有效。

再提醒一遍!得到数据一定要先查看数据类型!!!

以上这篇pandas object格式转float64格式的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • DataFrame中的object转换成float的方法
(0)

相关推荐

  • DataFrame中的object转换成float的方法

    数据类型转换: 今天遇到一个问题,就是DataFrame类型的数据里是str型的数字,想把数字转换为int 或float:百度没有发现好的,也可能输入的关键字不对,找不到: DataFrame.info()之后发现数据全是object 之前有一个方法就是: 先traindata=np.array(traindata,dtype=np.float)之后在 traindata=pd.DataFrame(traindata)转换 但看着很繁琐,突发奇想,试到了下面的方法,一句就搞定得意得意 train

  • pandas object格式转float64格式的方法

    在数据处理过程中 比如从CSV文件中导入数据 data_df = pd.read_csv("names.csv") 在处理之前一定要查看数据的类型 data_df.info() *RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Name 891 non-null object Sex 891 non-null object Age 714 non-null float64 SibSp 891 non-

  • pandas的object对象转时间对象的方法

    如下所示: df = pd.read_table('G:/tc/dataset/user_view.txt', sep=",")#读取文件 df.columns = ["a", "b", "c"]#列命名 df['c'] = pd.to_datetime(df['c'],format='%Y-%m-%d %H:%M:%S')#将读取的日期转为datatime格式 x=[i.year for i in df["c&qu

  • python pandas实现excel转为html格式的方法

    如下所示: #!/usr/bin/env Python # coding=utf-8 import pandas as pd import codecs xd = pd.ExcelFile('/Users/wangxingfan/Desktop/1.xlsx') df = xd.parse() with codecs.open('/Users/wangxingfan/Desktop/1.html','w','utf-8') as html_file: html_file.write(df.to_

  • Python基于pandas实现json格式转换成dataframe的方法

    本文实例讲述了Python基于pandas实现json格式转换成dataframe的方法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 import re import json from bs4 import BeautifulSoup import pandas as pd import requests import os from pandas.io.json import json_normalize class image_str

  • pandas 快速处理 date_time 日期格式方法

    当数据很多,且日期格式不标准时的时候,如果pandas.to_datetime 函数使用不当,会使得处理时间变得很长,提升速度的关键在于format的使用.下面举例进行说明: 示例数据: date 格式:02.01.2013 即 日.月.年 数据量:3000000 transcation.head() --------------------------------------------- date date_block_num shop_id item_id item_price item_

  • C#使用xsd文件验证XML格式是否正确的实现方法

    本文实例讲述了C#使用xsd文件验证XML格式是否正确的实现方法.分享给大家供大家参考,具体如下: //创建xmlDocument XmlDocument doc = new XmlDocument(); //创建声明段 如<?xml version="1.0" encoding="utf-8" ?> doc.AppendChild(doc.CreateXmlDeclaration("1.0", "utf-8",

  • C#实现json格式数据解析功能的方法详解

    本文实例讲述了C#实现json格式数据解析功能的方法.分享给大家供大家参考,具体如下: 来写写json的解析吧 首先添加web引用 System.Web.Extensions 路径 c:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\v3.5\System.Web.Extensions.dll 接下来就是两个函数了,一个是根据key来获取,一个是根据index来获取 public static bool GetValue

  • 如何利用pandas将Excel转为html格式

    前言 大家谈及用Pandas导出数据,应该就会想到to.xxx系列的函数. 这其中呢,比较常用的就是pd.to_csv()和pd.to_excel().但其实还可以将其导成Html网页格式,这里用到的函数就是pd.to_html()! 读取Excel 今天我们要实现Excel转为html格式,首先需要用读取Excel中的表格数据. import pandas as pd data = pd.read_excel('测试.xlsx') 查看数据 data.head() 下面我们来学习把DataFr

  • python操作csv格式文件之csv.DictReader()方法

    目录 简单使用csv.DictReader()方法 使用csv.DictReader()之fieldnames参数 使用csv.DictReader()之restkey参数 使用csv.DictReader()之restval参数 简单使用csv.DictReader()方法 示例代码1: import csv f = open('sample','r',encoding='utf8') reader = csv.DictReader(f) print(reader) # <csv.DictRe

  • PHP使用gmdate实现将一个UNIX 时间格式化成GMT文本的方法

    本文实例讲述了PHP使用gmdate实现将一个UNIX 时间格式化成GMT文本的方法.分享给大家供大家参考.具体分析如下: 语法如下: string gmdate (string $Format) string gmdate (string $Format, int $Time) 演示代码 <?php echo "When this page was loaded,\n"; echo 'It was then ', gmdate ('r'), "\n"; ec

随机推荐