Java实现的二叉树常用操作【前序建树,前中后递归非递归遍历及层序遍历】

本文实例讲述了Java实现的二叉树常用操作。分享给大家供大家参考,具体如下:

import java.util.ArrayDeque;
import java.util.Queue;
import java.util.Stack;
//二叉树的建树,前中后 递归非递归遍历 层序遍历
//Node节点
class Node {
    int element;
    Node left;
    Node right;
    public Node() {
    }
    public Node(int element) {
        this.element = element;
    }
}
// BinaryTree
public class Tree {
    // creat tree from array
    public static Node creatTree(int[] data, int i) {
        if (i >= data.length || data[i] == -1)
            return null;
        Node temp = new Node(data[i]);
        temp.left = creatTree(data, i * 2 + 1);
        temp.right = creatTree(data, i * 2 + 2);
        return temp;
    }
    // pre前序遍历递归
    public static void pre(Node temp) {
        if (temp == null)
            return;
        System.out.print(temp.element + " ");
        pre(temp.left);
        pre(temp.right);
    }
    // mid中序遍历递归
    public static void mid(Node temp) {
        if (temp == null)
            return;
        mid(temp.left);
        System.out.print(temp.element + " ");
        mid(temp.right);
    }
    // last后序遍历递归
    public static void last(Node temp) {
        if (temp == null)
            return;
        last(temp.left);
        last(temp.right);
        System.out.print(temp.element + " ");
    }
    // pre1前序遍历非递归
    public static void pre1(Node temp) {
        Stack<Node> stack = new Stack<>();
        while (temp != null || !stack.isEmpty()) {
            while (temp != null) {
                stack.push(temp);
                System.out.print(temp.element + " ");
                temp = temp.left;
            }
            if (!stack.isEmpty()) {
                temp = stack.pop().right;
            }
        }
    }
    // mid1中序遍历非递归
    public static void mid1(Node temp) {
        Stack<Node> stack = new Stack<>();
        while (temp != null || !stack.isEmpty()) {
            while (temp != null) {
                stack.push(temp);
                temp = temp.left;
            }
            if (!stack.isEmpty()) {
                temp = stack.pop();
                System.out.print(temp.element + " ");
                temp = temp.right;
            }
        }
    }
    // last1后序遍历非递归
    public static void last1(Node temp) {
        Stack<Node> stack = new Stack<>();
        Stack<Node> stack2 = new Stack<>();
        while (temp != null || !stack.isEmpty()) {
            while (temp != null) {
                stack.push(temp);
                stack2.push(temp);
                temp = temp.right;
            }
            if (!stack.isEmpty()) {
                temp = stack.pop().left;
            }
        }
        while (!stack2.isEmpty())
            System.out.print(stack2.pop().element + " ");
    }
    // ceng层序遍历
    public static void ceng(Node temp) {
        if (temp == null)
            return;
        Queue<Node> queue = new ArrayDeque<>();
        queue.offer(temp);
        while (!queue.isEmpty()) {
            temp = queue.poll();
            System.out.print(temp.element + " ");
            if (temp.left != null)
                queue.offer(temp.left);
            if (temp.right != null)
                queue.offer(temp.right);
        }
    }
    // Demo
    public static void main(String[] args) {
        int[] array = { 1, 2, 3, 4, 5, 6, 7, -1, -1, 10, -1, -1, 13 };
        Node tree = creatTree(array, 0);
        System.out.println("我们测试结果:");
        pre(tree);
        System.out.println();
        pre1(tree);
        System.out.println();
        mid(tree);
        System.out.println();
        mid1(tree);
        System.out.println();
        last(tree);
        System.out.println();
        last1(tree);
        System.out.println();
        ceng(tree);
    }
}

运行结果:

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

您可能感兴趣的文章:

  • java编程求二叉树最大路径问题代码分析
  • 图解二叉树的三种遍历方式及java实现代码
  • java实现二叉树的创建及5种遍历方法(总结)
  • java 完全二叉树的构建与四种遍历方法示例
  • 图解红黑树及Java进行红黑二叉树遍历的方法
  • Java中二叉树数据结构的实现示例
  • Java实现求二叉树的深度和宽度
  • JAVA 实现二叉树(链式存储结构)
  • Java实现打印二叉树所有路径的方法
(0)

相关推荐

  • Java实现打印二叉树所有路径的方法

    本文实例讲述了Java实现打印二叉树所有路径的方法.分享给大家供大家参考,具体如下: 问题: 给一个二叉树,把所有的路径都打印出来. 比如,对于下面这个二叉树,它所有的路径为: 8 -> 3 -> 1 8 -> 2 -> 6 -> 4 8 -> 3 -> 6 -> 7 8 -> 10 -> 14 -> 13 思路: 从根节点开始,把自己的值放在一个数组里,然后把这个数组传给它的子节点,子节点同样把自己的值放在这个数组里,又传给自己的子节点,

  • java编程求二叉树最大路径问题代码分析

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. For example: Given the below binary tree, 1 / \ 2 3 Return 6. 节点可能为负数,寻找一条最路径使得所经过节点和最大.路径可以开始和结束于任何节点但是不能走回头路. 这道题虽然

  • 图解红黑树及Java进行红黑二叉树遍历的方法

    红黑树 红黑树是一种数据结构与算法课堂上常常提到但又不会细讲的树,也是技术面试中经常被问到的树,然而无论是书上还是网上的资料,通常都比较刻板难以理解,能不能一种比较直观的方式来理解红黑树呢?本文将以图形的方式来解释红黑树的插入与删除操作. 对树结构的学习是一个递进的过程,我们通常所接触的树都是二叉树,二叉树简单来说就是每个非叶子节点都有且只有两个孩子,分别叫做左孩子和右孩子.二叉树中有一类特殊的树叫二叉查找树,二叉查找树是一种有序的树,对于每个非叶子节点,其左子树的值都小于它,其右子树的值都大于

  • java实现二叉树的创建及5种遍历方法(总结)

    用java实现的数组创建二叉树以及递归先序遍历,递归中序遍历,递归后序遍历,非递归前序遍历,非递归中序遍历,非递归后序遍历,深度优先遍历,广度优先遍历8种遍历方式: package myTest; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; import java.util.Stack; public class myClass { public static void main(

  • Java中二叉树数据结构的实现示例

    来看一个具体的习题实践: 题目 根据二叉树前序遍历序列例如:7,-7,8,#,#,-3,6,#,9,#,#,#,-5,#,#,构建二叉树,并且用前序.中序.后序进行遍历 代码 import java.util.Scanner; public class BinaryTree { public static String[] str; public static int count; /** * 静态内部类,定义二叉树节点 */ static class TreeNode { public Str

  • JAVA 实现二叉树(链式存储结构)

    二叉树的分类(按存储结构) 树的分类(按存储结构) 顺序存储(用数组表示(静态二叉树))   链式存储 一些特别的二叉根: 完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)    二叉搜索树或者叫二叉 查找树(BST)  所用二叉树如下图所示: 二叉树的Java实现(链式存储结构) class TreeNode { private int key = 0; private String data = null; private boolean isVisted = false

  • java 完全二叉树的构建与四种遍历方法示例

    本来就是基础知识,不能丢的太干净,今天竟然花了那么长的时间才写出来,记一下. 有如下的一颗完全二叉树: 先序遍历结果应该为:1  2  4  5  3  6  7 中序遍历结果应该为:4  2  5  1  6  3  7 后序遍历结果应该为:4  5  2  6  7  3  1 层序遍历结果应该为:1  2  3  4  5  6  7 二叉树的先序遍历.中序遍历.后序遍历其实都是一样的,都是执行递归操作. 我这记录一下层次遍历吧:层次遍历需要用到队列,先入队在出队,每次出队的元素检查是其是

  • 图解二叉树的三种遍历方式及java实现代码

    二叉树(binary tree)是一颗树,其中每个节点都不能有多于两个的儿子. 1.二叉树节点 作为图的特殊形式,二叉树的基本组成单元是节点与边:作为数据结构,其基本的组成实体是二叉树节点(binary tree node),而边则对应于节点之间的相互引用. 如下,给出了二叉树节点的数据结构图示和相关代码: // 定义节点类: private static class BinNode { private Object element; private BinNode lChild;// 定义指向

  • Java实现求二叉树的深度和宽度

    这个是常见的对二叉树的操作.总结一下: 设节点的数据结构,如下: 复制代码 代码如下: class TreeNode {     char val;     TreeNode left = null;     TreeNode right = null; TreeNode(char _val) {         this.val = _val;     } } 1.二叉树深度 这个可以使用递归,分别求出左子树的深度.右子树的深度,两个深度的较大值+1即可. 复制代码 代码如下: // 获取最大

  • Java实现的二叉树常用操作【前序建树,前中后递归非递归遍历及层序遍历】

    本文实例讲述了Java实现的二叉树常用操作.分享给大家供大家参考,具体如下: import java.util.ArrayDeque; import java.util.Queue; import java.util.Stack; //二叉树的建树,前中后 递归非递归遍历 层序遍历 //Node节点 class Node { int element; Node left; Node right; public Node() { } public Node(int element) { this.

  • java基础之数组常用操作总结(必看篇)

    常用的对数组进行的操作 1.求数组中最大值,最小值 思路:假设下标为0的元素是最大值,遍历数组,依次跟max进行比较,如果有元素比这个max还大,则把这个值赋给max.最小值同样 public class TestArray{ public static void main(String[] args){ int[] arr={23,45,234,576,34,87,34,12,67}; int max=arr[0]; int min=arr[0]; for(int i=0;i<arr.leng

  • Java 数据结构中二叉树前中后序遍历非递归的具体实现详解

    目录 一.前序遍历 1.题目描述 2.输入输出示例 3.解题思路 4.代码实现 二.中序遍历 1.题目描述 2.输入输出示例 3.解题思路 4.代码实现 三.后序遍历 1.题目描述 2.输入输出示例 3.解题思路 4.代码实现 一.前序遍历 1.题目描述 给你二叉树的根节点 root ,返回它节点值的 前序 遍历. 2.输入输出示例 示例 1: 输入:root = [1,null,2,3] 输出:[1,2,3] 示例2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1

  • Java数据结构最清晰图解二叉树前 中 后序遍历

    目录 一,前言 二,树 ①概念 ②树的基础概念 三,二叉树 ①概念 ②两种特殊的二叉树 ③二叉树的性质 四,二叉树遍历 ①二叉树的遍历 ②前序遍历 ③中序遍历 ④后序遍历 五,完整代码 一,前言 二叉树是数据结构中重要的一部分,它的前中后序遍历始终贯穿我们学习二叉树的过程,所以掌握二叉树三种遍历是十分重要的.本篇主要是图解+代码Debug分析,概念的部分讲非常少,重中之重是图解和代码Debug分析,我可以保证你看完此篇博客对于二叉树的前中后序遍历有一个新的认识!!废话不多说,让我们学起来吧!!

  • java非递归实现之二叉树的前中后序遍历详解

    二叉树的前中后序遍历 核心思想:用栈来实现对节点的存储.一边遍历,一边将节点入栈,在需要时将节点从栈中取出来并遍历该节点的左子树或者右子树,重复上述过程,当栈为空时,遍历完成. 前序遍历 //非递归 //根 左 右 class Solution { public List<Integer> preorderTraversal(TreeNode root) { //用数组来存储前序遍历结果 List<Integer> list = new ArrayList<>(); i

  • C++二叉树的前序中序后序非递归实现方法详细讲解

    目录 二叉树的前序遍历 二叉树的中序遍历 二叉树的后序遍历 总结 二叉树的前序遍历 前序遍历的顺序是根.左.右.任何一颗树都可以认为分为左路节点,左路节点的右子树.先访问左路节点,再来访问左路节点的右子树.把访问左路节点的右子树看成一个子问题,就可以完整递归访问了. 先定义栈st存放节点.v存放值,TreeNode* cur,cur初始化为root. 当cur不为空或者栈不为空的时候(一开始栈是空的,cur不为空),循环继续:先把左路节点存放进栈中,同时把值存入v中,一直循环,直到此时的左路节点

  • c语言版本二叉树基本操作示例(先序 递归 非递归)

    复制代码 代码如下: 请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):ABD==E==CF==G== 先序递归遍历:A B D E C F G中序递归遍历:D B E A F C G后序递归遍历:D E B F G C A层序递归遍历:ABCDEFG先序非递归遍历:A B D E C F G中序非递归遍历:D B E A F C G后序非递归遍历:D E B F G C A深度:请按任意键继续. . . 复制代码 代码如下: #include<stdio.h>#include&

  • C++ 非递归实现二叉树的前中后序遍历

    目录 二叉树的前序遍历 二叉树的中序遍历 二叉树的后序遍历 二叉树的前序遍历 在不使用递归的方式遍历二叉树时,我们可以使用一个栈模拟递归的机制.二叉树的前序遍历顺序是:根 → 左子树 → 右子树,我们可以先将二叉树的左路结点入栈,在入栈的同时便对其进行访问,此时就相当于完成了根和左子树的访问,当左路结点入栈完毕后再从栈顶依次取出结点,并用同样的方式访问其右子树即可. 具体步骤如下: 将左路结点入栈,入栈的同时访问左路结点. 取出栈顶结点top. 准备访问top结点的右子树. struct Tre

  • 二叉树递归迭代及morris层序前中后序遍历详解

    目录 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索 方法二:递归 2.前序遍历 3.中序遍历 4.后序遍历 递归解法 前序遍历--递归 迭代解法 前序遍历--迭代 核心思想: 三种迭代解法的总结: Morris遍历 morris--前序遍历 morris--中序遍历 morris--后序遍历: 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索   (以下解释来自leetcode官方题解) 我们可以用广度优先搜索解决这个问题. 我们可以想到最

  • C语言实现线索二叉树的前中后创建和遍历详解

    目录 1.结构 1.1初始化tag 2.基本操作 2.1先序创建二叉树 2.2.先序线索化 2.2.1.先序遍历 2.3.中序线索化 2.3.1中序遍历 2.4.后序线索化 2.4.1后序遍历 总结 1.结构 #include<stdio.h> #include<stdlib.h> #define false 0 #define true 1 using namespace std; typedef struct BTnode{ int data; struct BTnode *l

随机推荐