当Mysql行锁遇到复合主键与多列索引详解

背景

今天在配合其他项目组做系统压测,过程中出现了偶发的死锁问题。分析代码后发现有复合主键的update情况,更新复合主键表时只使用了一个字段更新,同时在事务内又有对该表的insert操作,结果出现了偶发的死锁问题。

比如表t_lock_test中有两个主键都为primary key(a,b) ,但是更新时却通过update t_lock_test .. where a = ? ,然后该事务内又有insert into t_lock_test values(...)

InnoDB中的锁算法是Next-Key Locking,很可能是因为这个点导致的死锁,但是复合主键下会出发Next-Key Locking吗,那多列联合unique索引下又会触发Next-Key Locking吗,书上并没有找到答案,得实际测试一下。

InnoDB中的锁

锁是数据库系统区别于文件系统的一个关键特性。锁机制用于管理对共享资源的并发访[插图]。InnoDB存储引擎会在行级别上对表数据上锁,这固然不错。不过InnoDB存储引擎也会在数据库内部其他多个地方使用锁,从而允许对多种不同资源提供并发访问。例如,操作缓冲池中的LRU列表,删除、添加、移动LRU列表中的元素,为了保证一致性,必须有锁的介入。数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性。

由于使用锁时基本都是在InnoDB存储引擎下,所以跳过MyISAM,直接讨论InnoDB。

锁类型

InnoDB存储引擎实现了如下两种标准的行级锁:

  • 共享锁(S Lock),允许事务读一行数据
  • 排它锁(x lOCK),允许事务删除或更新一条数据

如果一个事务T1已经获得了r的共享锁,那么另外的事务T2可以立即获得行r的共享锁,因为读取并没有改变r的数据,成这种情况为锁兼容(Lock Compatible)。但若有其他的事务T3箱获得行r的排它锁,则比如等待T1、T2释放行r上的共享锁——这种情况称为锁不兼容。

排它锁和共享锁的兼容性:

\ X S
X 不兼容 不兼容
S 不兼容 兼容

InnoDB中对数据进行Update操作会产生行锁,也可以显示的添加行锁(也就是平时所说的“悲观锁”)

select for update

锁算法

InnoDB有3种行锁的算法,其分别是:

Record Lock:单个行记录上的锁,就是字面意思的行锁

Record Lock会锁住索引记录(注意这里说的是索引,因为InnoDB下主键索引即数据),ruguo InnoDB存储引擎表在建立的时候没有设置任何一个索引,那么这时对InnoDB存储引擎会使用隐士的主键来进行锁定。

Gap Lock:间隙锁,锁定一个范围,但不包含记录本身

Next-Key Lock:Gap Lock+Record Lock,锁定一个范围,并且锁定记录本身

Gap Lock和Next-Key Lock的锁定区间划分原则是一样的。

例如一个索引有10/11/13和20这四个值,那么该索引被划分的的区间为:

(-∞,10]
(10,11]
(11,13]
(13,20]
(20,+∞]

采用Next-Key Lock的锁定技术称为Next-Key Locking。其设计的目的是为了解决Phantom Problem,这将在下一小节中介绍。而利用这种锁定技术,锁定的不是单个值,而是一个范围,是谓词锁(predict lock)的一种改进。

当查询的索引含有唯一(unique)属性时(主键索引,唯一索引)InnoDB存储引擎会对Next-Key Lock优化,将其降级为Record Lock,即仅锁住索引本身,不是范围。

下面来看一个辅助索引(非唯一索引)下的锁示例:

CREATE TABLE z ( a INT, b INT, PRIMARY KEY(a), KEY(b) );

INSERT INTO z SELECT 1,1;
INSERT INTO z SELECT 3,1;
INSERT INTO z SELECT 5,3;
INSERT INTO z SELECT 7,6;
INSERT INTO z SELECT 10,8;

表z的列b是辅助索引,若果事务A中执行:

SELECT * FROM z WHERE b=3 FOR UPDATE

由于b列是辅助索引,所以此时会使用Next-Key Locking算法,锁定的范围是(1,3]。特别注意,InnoDB还会对辅助索引的下一个值加上Gap Lock,即还有一个辅助索引范围为(3,6]的锁。因此,若在新事务B中运行以下SQL,都会被阻塞:

1. SELECT * FROM z WHERE a = 5 LOCK IN SHARE MODE;//S锁
2. INSERT INTO z SELECT 4,2;
3. INSERT INTO z SELECT 6,5;

第1个SQL不能执行,因为在事务A中执行的SQL已经对聚集索引中列a=5的值加上X锁,因此执行会被阻塞。

第2个SQL,主键插入4,没有问题,但是插入的辅助索引值2在锁定的范围(1,3]中,因此执行同样会被阻塞。

第3个SQL,插入的主键6没有被锁定,5也不在范围(1,3]之间。但插入的b列值5在另下一个Gap Lock范围(3,6]中,故同样需要等待。

而下面的SQL语句,由于不在Next-Key Lock和Gap Lock范围内,不会被阻塞,可以立即执行:

INSERT INTO z SELECT 8,6;
INSERT INTO z SELECT 2,0;
INSERT INTO z SELECT 6,7;

从上面的例子可以发现,Gap Lock的作用是为了组织多个事务将数据插入到统一范围内,这样会导致幻读问题(Phantom Problem)。例子中事务A已经锁定了b=3的记录。若此时没有Gap Lock锁定(3,6],其他事务就可以插入索引b列为3的记录,这会导致事务A中的用户再次执行同样查询会返回不同的记录,即导致幻读问题的产生。

用户也可以通过以下两种方式来显示的关闭Gap Lock(但不推荐):

  • 将事务的隔离级别设置为READ COMMITED
  • 将参数innodb_locks_unsafe_for_binlog设置为1

在InnoDB中,对于Insert的操作,会检查插入记录的下一条记录是否被锁定,若已经被锁定,则不允许插入。对于上面的例子,事务A已经锁定了表z中b=3的记录,即已经锁定了(1,3]的范围,这时若在其他事务中执行如下插入也会导致阻塞:

INSERT INTO z SELECT 2,0

因为在辅助索引列b上插入值为2的记录时,会监测到下一个记录3已经被索引,修改b列值后,就可以执行了

INSERT INTO z SELECT 2,0

幻读(Phantom Problem)

幻读是指在同一事务下,连续执行两次同样的SQL语句可能会导致不同的结果,第二次的SQL可能会返回之前不存在的行。

在默认的事务隔离级别(REPEATABLE READ)下,InnoDB存储引擎采用Next—Key Locking机制来避免幻读问题。

复(联)合主键与锁

上面的锁机制介绍(摘自《Mysql技术内幕 InnoDB存储引擎 第2版》),只是针对辅助索引和聚集索引,那么复合主键下行锁的表现形式又是怎么样呢?从书上并没有找到答案,实际来测试一下。

首先创建一个复合主键的表

CREATE TABLE `composite_primary_lock_test` (
 `id1` int(255) NOT NULL,
 `id2` int(255) NOT NULL,
 PRIMARY KEY (`id1`,`id2`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (10, 10);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (1, 8);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (3, 6);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (5, 6);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (3, 3);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (1, 1);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (5, 1);
INSERT INTO `composite_primary_lock_test`(`id1`, `id2`) VALUES (7, 1);

事务A先来查询id2=6的列,并添加行锁

select * from composite_primary_lock_test where id2 = 6 lock in share mode

此时的锁会降级到Record Lock吗?事务B Update一条Next-Key Lock范围内的数据(id1=1,id2=8)证明一下:

UPDATE `composite_primary_lock_test` SE WHERE `id1` = 1 AND `id2` = 8;

结果是UPDATE被阻塞了,那么再来试试加锁时在where中把两个主键都带上:

select * from composite_primary_lock_test where id2 = 6 and id1 = 5 lock in share mode

执行UPDATE

UPDATE `composite_primary_lock_test` SE WHERE `id1` = 1 AND `id2` = 8;

结果是UPDATE没有被阻塞

上面加锁的id2=6的数据,不只1条,那么再试试对唯一的数据id2=8,只根据一个主键加锁呢,会不会降级为行级锁:

select * from composite_primary_lock_test where id2 = 8 lock in share mode;
UPDATE `composite_primary_lock_test` SE WHERE `id1` = 12 AND `id2` = 10;

结果也是被阻塞了,实验证明:

复合主键下,如果加锁时不带上所有主键,InnoDB会使用Next-Key Locking算法,如果带上所有主键,才会当作唯一索引处理,降级为Record Lock,只锁当前记录。

多列索引(联合索引)与锁

上面只验证了复合主键下的锁机制,那么多列索引呢,会不会和复合索引机制相同?多列unique索引呢?

新建一个测试表,并初始化数据

CREATE TABLE `multiple_idx_lock_test` (
 `id` int(255) NOT NULL,
 `idx1` int(255) NOT NULL,
 `idx2` int(255) DEFAULT NULL,
 PRIMARY KEY (`id`,`idx1`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

ALTER TABLE `multiple_idx_lock_test`
ADD UNIQUE INDEX `idx_multi`(`idx1`, `idx2`) USING BTREE;

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (1, 1, 1);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (5, 2, 2);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (7, 3, 3);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (4, 4, 4);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (2, 4, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (3, 5, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (8, 6, 5);
INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (6, 6, 6);

事务A查询增加S锁,查询时仅使用idx1列,并遵循最左原则:

select * from multiple_idx_lock_test where idx1 = 6 lock in share mode;

现在插入一条Next-Key Lock范围内的数据:

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (9, 6, 7);

结果是被阻塞了,再试一遍通过多列索引中所有字段来加锁:

select * from multiple_idx_lock_test where idx1 = 6 and idx2 = 6 lock in share mode;

插入一条Next-Key Lock范围内的数据:

INSERT INTO `multiple_idx_lock_test`(`id`, `idx1`, `idx2`) VALUES (9, 6, 7);

结果是没有被阻塞

由此可见,当使用多列唯一索引时,加锁需要明确要锁定的行(即加锁时使用索引的所有列),InnoDB才会认为该条记录为唯一值,锁才会降级为Record Lock。否则会使用Next-Key Lock算法,锁住范围内的数据。

总结

在使用Mysql中的锁时要谨慎使用,尤其时更新/删除数据时,尽量使用主键更新,如果在复合主键表下更新时,一定通过所有主键去更新,避免锁范围变大带来的死锁等问题。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

参考

《Mysql技术内幕 InnoDB存储引擎 第2版》 - 姜承尧

(0)

相关推荐

  • MySQL 创建主键,外键和复合主键的语句

    1.创建主键语法 ALTER TABLE table_name ADD CONSTRAINT pk_name PRIMARY KEY(列名); 2.创建外键语法 ALTER TABLE news_info[子表名] ADD CONSTRAINT FK_news_info_news_type[约束名] FOREIGN KEY (info_id)[子表列] REFERENCES news_type[主表名] (id)[主表列] ; 3.使用组合主键 如果一列不能唯一区分一个表里的记录时,可以考虑多个

  • MySQL索引使用说明(单列索引和多列索引)

    1. 单列索引 在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一.可以考虑使用索引的主要有两种类型的列:在Where子句中出现的列,在join子句中出现的列.请看下面这个查询: Select age ## 不使用索引 FROM people Where firstname='Mike' ## 考虑使用索引 AND lastname='Sullivan' ## 考虑使用索引 这个查询与前面的查询略有不同,但仍属于简单查询.由于age是在Select部分被引用,MySQL不会用它来限制列选

  • 正确理解Mysql中的列索引和多列索引

    Mysql数据库提供两种类型的索引,如果没正确设置,索引的利用效率会大打折扣却完全不知问题出在这. 复制代码 代码如下: CREATE TABLE test (    id         INT NOT NULL,    last_name  CHAR(30) NOT NULL,    first_name CHAR(30) NOT NULL,    PRIMARY KEY (id),    INDEX name (last_name,first_name)); 以上创建的其实是一个多列索引,

  • 当Mysql行锁遇到复合主键与多列索引详解

    背景 今天在配合其他项目组做系统压测,过程中出现了偶发的死锁问题.分析代码后发现有复合主键的update情况,更新复合主键表时只使用了一个字段更新,同时在事务内又有对该表的insert操作,结果出现了偶发的死锁问题. 比如表t_lock_test中有两个主键都为primary key(a,b) ,但是更新时却通过update t_lock_test .. where a = ? ,然后该事务内又有insert into t_lock_test values(...) InnoDB中的锁算法是Ne

  • django自定义非主键自增字段类型详解(auto increment field)

    1.django自定义字段类型,实现非主键字段的自增 # -*- encoding: utf-8 -*- from django.db.models.fields import Field, IntegerField from django.core import checks, exceptions from django.utils.translation import ugettext_lazy as _ class AutoIncreField(Field): description =

  • 深入Mysql,SqlServer,Oracle主键自动增长的设置详解

    1.把主键定义为自动增长标识符类型MySql在mysql中,如果把表的主键设为auto_increment类型,数据库就会自动为主键赋值.例如: 复制代码 代码如下: create table customers(id int auto_increment primary key not null, name varchar(15));insert into customers(name) values("name1"),("name2");select id fr

  • 初探SQL语句复合主键与联合主键

    一.复合主键 所谓的复合主键 就是指你表的主键含有一个以上的字段组成,不使用无业务含义的自增id作为主键. 比如 create table test ( name varchar(19), id number, value varchar(10), primary key (name,id) ) 上面的name和id字段组合起来就是你test表的复合主键 ,它的出现是因为你的name字段可能会出现重名,所以要加上ID字段这样就可以保证你记录的唯一性 ,一般情况下,主键的字段长度和字段数目要越少越

  • MySQL 行锁和表锁的含义及区别详解

    一.前言 对于行锁和表锁的含义区别,在面试中应该是高频出现的,我们应该对MySQL中的锁有一个系统的认识,更详细的需要自行查阅资料,本篇为概括性的总结回答. MySQL常用引擎有MyISAM和InnoDB,而InnoDB是mysql默认的引擎.MyISAM不支持行锁,而InnoDB支持行锁和表锁. 相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制. MySQL大致可归纳为以下3种锁: 表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率

  • 深入谈谈MySQL中的自增主键

    MySQL的主键可以是自增的,那么如果在断电重启后新增的值还会延续断电前的自增值吗?自增值默认为1,那么可不可以改变呢?下面就说一下 MySQL的自增值. 特点 保存策略 1.如果存储引擎是 MyISAM,那么这个自增值是存储在数据文件中的: 2.如果是 InnoDB引擎,1)在 5.6之前是存储在内存中,没有持久化,在重启后会去找最大的键值,举个例子,如果一个表当前数据行里最大 id是10,AUTO_INCREMENT=11.这时候,我们删除 id=10 的行,AUTO_INCREMENT 还

  • 浅谈MySQL中的自增主键用完了怎么办

    在面试中,大家应该经历过如下场景 面试官:"用过mysql吧,你们是用自增主键还是UUID?" 你:"用的是自增主键" 面试官:"为什么是自增主键?" 你:"因为采用自增主键,数据在物理结构上是顺序存储,性能最好,blabla-" 面试官:"那自增主键达到最大值了,用完了怎么办?" 你:"what,没复习啊!!"    (然后,你就可以回去等通知了!) 这个问题是一个粉丝给我提的,我觉得

  • Java的Hibernate框架中复合主键映射的创建和使用教程

    复合主键映射需要在映射配置文件中使用<composite-id>标签,该标签是指将一个类指定为相应的复合主键,它的name属性需要指定类文件中定义的属性值,并在该标签中添加<key-property>子标签. Note:想要使用复合映射必须要将复合主键放到一个类中,也就是讲复合主键属性和其它属性分到两个类中,并将复合主键的类实现接口Serializable,该接口隶属于java.io. 复合主键的映射关系的主键是由多个列复合而成的,对应到数据表中相当的简单,如下图: 1.类文件 这

  • sql server创建复合主键的2种方法

    创建复合主键: 方法一:创建表之后,alter table table_name add primary key(字段1,字段2) 方法二:CREATE TABLE 表名 (字段名1 Int Not Null,                         字段名2 nvarchar(13) Not Null                         字段名3----                         字段名N----)      GO ALTER TABLE 表名 WIT

随机推荐