通过JDK源码角度分析Long类详解

概况

Java的Long类主要的作用就是对基本类型long进行封装,提供了一些处理long类型的方法,比如long到String类型的转换方法或String类型到long类型的转换方法,当然也包含与其他类型之间的转换方法。除此之外还有一些位相关的操作。

Java long数据类型

long数据类型是64位有符号的Java原始数据类型。当对整数的计算结果可能超出int数据类型的范围时使用。

long数据类型范围是-9,223,372,036,854,775,808至9,223,372,036,854,775,807(-2^63至2^63-1)。

long数据类型范围内的所有整数称为long类型的整数字面量。long类型的整数常数总是以大写L或小写l结尾。

以下是使用long类型的整数字面量的示例:

long num1 = 0L;
long num2 = 4L;
long mum3 = -3;
long num4 = 8;
long num5 = -1L;

本文主要介绍的是通过JDK源码分析Long类的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

继承结构

--java.lang.Object
 --java.lang.Number
 --java.lang.Long

主要属性

public static final long MIN_VALUE = 0x8000000000000000L;
public static final long MAX_VALUE = 0x7fffffffffffffffL;
public static final int BYTES = SIZE / Byte.SIZE;
public static final int SIZE = 64;
public static final Class<Long> TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  • MIN_VALUE静态变量表示long能取的最小值,为-2的63次方,被final修饰说明不可变。
  • 类似的还有MAX_VALUE,表示long最大值为2的63次方减1。
  • SIZE用来表示二进制补码形式的long值的比特数,值为64,静态变量且不可变。
  • BYTES用来表示二进制补码形式的long值的字节数,值为SIZE除于Byte.SIZE,结果为8。
  • TYPE的toString的值是long。
    Class的getPrimitiveClass是一个native方法,在Class.c中有个Java_java_lang_Class_getPrimitiveClass方法与之对应,所以JVM层面会通过JVM_FindPrimitiveClass函数根据”long”字符串获得jclass,最终到Java层则为Class<Long>。
JNIEXPORT jclass JNICALL
Java_java_lang_Class_getPrimitiveClass(JNIEnv *env,
     jclass cls,
     jstring name)
{
 const char *utfName;
 jclass result;

 if (name == NULL) {
 JNU_ThrowNullPointerException(env, 0);
 return NULL;
 }

 utfName = (*env)->GetStringUTFChars(env, name, 0);
 if (utfName == 0)
 return NULL;

 result = JVM_FindPrimitiveClass(env, utfName);

 (*env)->ReleaseStringUTFChars(env, name, utfName);

 return result;
}

当TYPE执行toString时,逻辑如下,则其实是getName函数决定其值,getName通过native方法getName0从JVM层获取名称,

public String toString() {
 return (isInterface() ? "interface " : (isPrimitive() ? "" : "class "))
  + getName();
 }

getName0根据一个数组获得对应的名称,JVM根据Java层的Class可得到对应类型的数组下标,比如这里下标为11,则名称为”long”。

const char* type2name_tab[T_CONFLICT+1] = {
 NULL, NULL, NULL, NULL,
 "boolean",
 "char",
 "float",
 "double",
 "byte",
 "short",
 "int",
 "long",
 "object",
 "array",
 "void",
 "*address*",
 "*narrowoop*",
 "*conflict*"
};

LongCache内部类

private static class LongCache {
 private LongCache(){}

 static final Long cache[] = new Long[-(-128) + 127 + 1];

 static {
  for(int i = 0; i < cache.length; i++)
  cache[i] = new Long(i - 128);
 }
 }

LongCache是Long的一个内部类,它包含了long可能值的Long数组,默认范围是[-128,127],它不会像Byte类将所有可能值缓存起来,因为long类型范围很大,将它们全部缓存起来代价太高,而Byte类型就是从-128到127,一共才256个。这里默认只实例化256个Long对象,当Long的值范围在[-128,127]时则直接从缓存中获取对应的Long对象,不必重新实例化。这些缓存值都是静态且final的,避免重复的实例化和回收。

主要方法

parseLong方法

 public static long parseLong(String s) throws NumberFormatException {
 return parseLong(s, 10);
 }

 public static long parseLong(String s, int radix)
  throws NumberFormatException
 {
 if (s == null) {
  throw new NumberFormatException("null");
 }

 if (radix < Character.MIN_RADIX) {
  throw new NumberFormatException("radix " + radix +
      " less than Character.MIN_RADIX");
 }
 if (radix > Character.MAX_RADIX) {
  throw new NumberFormatException("radix " + radix +
      " greater than Character.MAX_RADIX");
 }

 long result = 0;
 boolean negative = false;
 int i = 0, len = s.length();
 long limit = -Long.MAX_VALUE;
 long multmin;
 int digit;

 if (len > 0) {
  char firstChar = s.charAt(0);
  if (firstChar < '0') { // Possible leading "+" or "-"
  if (firstChar == '-') {
   negative = true;
   limit = Long.MIN_VALUE;
  } else if (firstChar != '+')
   throw NumberFormatException.forInputString(s);

  if (len == 1) // Cannot have lone "+" or "-"
   throw NumberFormatException.forInputString(s);
  i++;
  }
  multmin = limit / radix;
  while (i < len) {
  // Accumulating negatively avoids surprises near MAX_VALUE
  digit = Character.digit(s.charAt(i++),radix);
  if (digit < 0) {
   throw NumberFormatException.forInputString(s);
  }
  if (result < multmin) {
   throw NumberFormatException.forInputString(s);
  }
  result *= radix;
  if (result < limit + digit) {
   throw NumberFormatException.forInputString(s);
  }
  result -= digit;
  }
 } else {
  throw NumberFormatException.forInputString(s);
 }
 return negative ? result : -result;
 }

两个parseLong方法,主要看第二个即可,第一个参数是待转换的字符串,第二个参数表示进制数。怎么更好理解这个参数呢?举个例子,Long.parseLong("100",10)表示十进制的100,所以值为100,而Long.parseLong("100",2)表示二进制的100,所以值为4。另外如果Long.parseLong("10000000000000000000",10)会抛出java.lang.NumberFormatException异常。

该方法的逻辑是首先判断字符串不为空且进制数在Character.MIN_RADIX和Character.MAX_RADIX之间,即2到36。然后判断输入的字符串的长度必须大于0,再根据第一个字符可能为数字或负号或正号进行处理。核心处理逻辑是字符串转换数字,n进制转成十进制办法基本大家都知道的了,假如357为8进制,则结果为$3*8^2+5*8^1+7*8^0 = 239$,假如357为十进制,则结果为$3*10^2+5*10^1+7*10^0 = 357$,上面的转换方法也差不多是根据此方法,只是稍微转变了思路,方式分别为$((3*8+5)*8+7) = 239$和$((3*10+5)*10+7)=357$。从中可以推出规则了,从左到右遍历字符串的每个字符,然后乘以进制数,再加上下一个字符,接着再乘以进制数,再加上下个字符,不断重复,直到最后一个字符。除此之外另外一个不同就是上面的转换不使用加法来做,全都转成负数来运算,其实可以看成是等价了,这个很好理解,而为什么要这么做就要归咎到long类型的范围了,因为负数Long.MIN_VALUE变化为正数时会导致数值溢出,所以全部都用负数来运算。

构造函数

public Long(String s) throws NumberFormatException {
  this.value = parseLong(s, 10);
 }
public Long(long value) {
  this.value = value;
 }

包含两种构造函数,分别可以传入long和String类型。它是通过调用parseLong方法进行转换的,所以转换逻辑与上面的parseLong方法一样。

 static void getChars(long i, int index, char[] buf) {
  long q;
  int r;
  int charPos = index;
  char sign = 0;

  if (i < 0) {
   sign = '-';
   i = -i;
  }

  while (i > Integer.MAX_VALUE) {
   q = i / 100;
   // really: r = i - (q * 100);
   r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
   i = q;
   buf[--charPos] = Integer.DigitOnes[r];
   buf[--charPos] = Integer.DigitTens[r];
  }

  int q2;
  int i2 = (int)i;
  while (i2 >= 65536) {
   q2 = i2 / 100;
   r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
   i2 = q2;
   buf[--charPos] = Integer.DigitOnes[r];
   buf[--charPos] = Integer.DigitTens[r];
  }

  for (;;) {
   q2 = (i2 * 52429) >>> (16+3);
   r = i2 - ((q2 << 3) + (q2 << 1));
   buf[--charPos] = Integer.digits[r];
   i2 = q2;
   if (i2 == 0) break;
  }
  if (sign != 0) {
   buf[--charPos] = sign;
  }
 }

该方法主要做的事情是将某个long型数值放到char数组里面,比如把357按顺序放到char数组中。这里面处理用了较多技巧,将long拆成高位4个字节和低位4个字节处理分开处理,while (i >= Integer.MAX_VALUE)部分就是处理高位的4个字节,每次处理2位数,这里有个特殊的地方((q << 6) + (q << 5) + (q << 2))其实等于q*100,Integer.DigitTensInteger.DigitOnes数组在前面Integer文章中已经讲过它的作用了,用来获取十位和个位。

接着看怎么处理低4个字节,它继续将4个字节分为高位2个字节和低位2个字节,while (i >= 65536)部分就是处理高位的两个字节,每次处理2位数,处理逻辑与高位4个字节的处理逻辑一样。

再看接下去的低位的两个字节怎么处理,其实本质也是求余思想,但又用了一些技巧,比如(i * 52429) >>> (16+3)其实约等于i/10 ((q << 3) + (q << 1))其实等于q*10,然后再通过Integer.digits数组获取到对应的字符。可以看到低位处理时它尽量避开了除法,取而代之的是用乘法和右移来实现,可见除法是一个比较耗时的操作,比起乘法和移位。另外也可以看到能用移位和加法来实现乘法的地方也尽量不用乘法,这也说明乘法比起它们更加耗时。而高位处理时没有用移位是因为做乘法后可能会溢出。

toString方法

public static String toString(long i) {
  if (i == Long.MIN_VALUE)
   return "-9223372036854775808";
  int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
  char[] buf = new char[size];
  getChars(i, size, buf);
  return new String(buf, true);
 }
public String toString() {
  return toString(value);
 }
public static String toString(long i, int radix) {
  if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
   radix = 10;
  if (radix == 10)
   return toString(i);
  char[] buf = new char[65];
  int charPos = 64;
  boolean negative = (i < 0);

  if (!negative) {
   i = -i;
  }

  while (i <= -radix) {
   buf[charPos--] = Integer.digits[(int)(-(i % radix))];
   i = i / radix;
  }
  buf[charPos] = Integer.digits[(int)(-i)];

  if (negative) {
   buf[--charPos] = '-';
  }

  return new String(buf, charPos, (65 - charPos));
 }

一共有3个toString方法,两个静态方法一个是非静态方法,第一个toString方法很简单,就是先用stringSize得到数字是多少位,再用getChars获取数字对应的char数组,最后返回一个String类型。第二个toString调用第一个toString,没啥好说。第三个toString方法是带了进制信息的,它会转换成对应进制的字符串。凡是不在2到36进制范围之间的都会被处理成10进制,我们都知道从十进制转成其他进制时就是不断地除于进制数得到余数,然后把余数反过来串起来就是最后结果,所以这里其实也是这样子做的,得到余数后通过digits数组获取到对应的字符,而且这里是用负数的形式来运算的。

valueOf方法

public static Long valueOf(long l) {
  final int offset = 128;
  if (l >= -128 && l <= 127) { // will cache
   return LongCache.cache[(int)l + offset];
  }
  return new Long(l);
 }
public static Long valueOf(String s) throws NumberFormatException
 {
  return Long.valueOf(parseLong(s, 10));
 }
public static Long valueOf(String s, int radix) throws NumberFormatException {
  return Long.valueOf(parseLong(s, radix));
 }

有三个valueOf方法,核心逻辑在第一个valueOf方法中,因为LongCache缓存了[-128,127]值的Long对象,对于在范围内的直接从LongCache的数组中获取对应的Long对象即可,而在范围外的则需要重新实例化了。

decode方法

 public static Long decode(String nm) throws NumberFormatException {
  int radix = 10;
  int index = 0;
  boolean negative = false;
  Long result;

  if (nm.length() == 0)
   throw new NumberFormatException("Zero length string");
  char firstChar = nm.charAt(0);
  if (firstChar == '-') {
   negative = true;
   index++;
  } else if (firstChar == '+')
   index++;
  if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
   index += 2;
   radix = 16;
  }
  else if (nm.startsWith("#", index)) {
   index ++;
   radix = 16;
  }
  else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
   index ++;
   radix = 8;
  }

  if (nm.startsWith("-", index) || nm.startsWith("+", index))
   throw new NumberFormatException("Sign character in wrong position");

  try {
   result = Long.valueOf(nm.substring(index), radix);
   result = negative ? Long.valueOf(-result.longValue()) : result;
  } catch (NumberFormatException e) {
   String constant = negative ? ("-" + nm.substring(index))
          : nm.substring(index);
   result = Long.valueOf(constant, radix);
  }
  return result;
 }

decode方法主要作用是解码字符串转成Long型,比如Long.decode("11")的结果为11;Long.decode("0x11")Long.decode("#11")结果都为17,因为0x和#开头的会被处理成十六进制;Long.decode("011")结果为9,因为0开头会被处理成8进制。

xxxValue方法

 public byte byteValue() {
  return (byte)value;
 }
public short shortValue() {
  return (short)value;
 }
public int intValue() {
  return (int)value;
 }
public long longValue() {
  return value;
 }
public float floatValue() {
  return (float)value;
 }
public double doubleValue() {
  return (double)value;
 }

包括shortValue、intValue、longValue、byteValue、floatValue和doubleValue等方法,其实就是转换成对应的类型。

hashCode方法

public int hashCode() {
  return Long.hashCode(value);
 }
public static int hashCode(long value) {
  return (int)(value ^ (value >>> 32));
 }

可以看到hashCode方法返回的事int类型,首先将long型值无符号右移32位,再和原来的值进行异或运算,最后返回int类型值。

hashCode方法

public boolean equals(Object obj) {
  if (obj instanceof Long) {
   return value == ((Long)obj).longValue();
  }
  return false;
 }

比较是否相同时先判断是不是Long类型再比较值。

compare方法

public static int compare(long x, long y) {
  return (x < y) ? -1 : ((x == y) ? 0 : 1);
 }

x小于y则返回-1,相等则返回0,否则返回1。

无符号转换

private static BigInteger toUnsignedBigInteger(long i) {
  if (i >= 0L)
   return BigInteger.valueOf(i);
  else {
   int upper = (int) (i >>> 32);
   int lower = (int) i;
   return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
    add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
  }
 }
public static String toUnsignedString(long i) {
  return toUnsignedString(i, 10);
 }
public static String toUnsignedString(long i, int radix) {
  if (i >= 0)
   return toString(i, radix);
  else {
   switch (radix) {
   case 2:
    return toBinaryString(i);

   case 4:
    return toUnsignedString0(i, 2);

   case 8:
    return toOctalString(i);

   case 10:
    long quot = (i >>> 1) / 5;
    long rem = i - quot * 10;
    return toString(quot) + rem;

   case 16:
    return toHexString(i);

   case 32:
    return toUnsignedString0(i, 5);

   default:
    return toUnsignedBigInteger(i).toString(radix);
   }
  }
 }

toUnsignedBigInteger方法将long转成BigInteger类型,主要用BigInteger.valueOf进行转换,如果小于0则需要先转成高4字节和低4字节,然后再转换。

toUnsignedString方法中,对于大于0的long值直接用toString转换,而小于0的则要按照进制不同分别做不同处理。

bitCount方法

public static int bitCount(long i) {
  // HD, Figure 5-14
  i = i - ((i >>> 1) & 0x5555555555555555L);
  i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
  i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
  i = i + (i >>> 8);
  i = i + (i >>> 16);
  i = i + (i >>> 32);
  return (int)i & 0x7f;
  }

该方法主要用于计算二进制数中1的个数。一看有点懵,都是移位和加减操作。先将重要的列出来,0x5555555555555555L等于0101010101010101010101010101010101010101010101010101010101010101,0x3333333333333333L等于0011001100110011001100110011001100110011001100110011001100110011,0x0f0f0f0f0f0f0f0fL等于0000111100001111000011110000111100001111000011110000111100001111。它的核心思想就是先每两位一组统计看有多少个1,比如10011111则每两位有1、1、2、2个1,记为01011010,然后再算每四位一组看有多少个1,而01011010则每四位有2、4个1,记为00100100,接着每8位一组就为00000110,接着16位,32位,64位,最终在与0x7f进行与运算,得到的数即为1的个数。

highestOneBit方法

public static long highestOneBit(long i) {
  // HD, Figure 3-1
  i |= (i >> 1);
  i |= (i >> 2);
  i |= (i >> 4);
  i |= (i >> 8);
  i |= (i >> 16);
  i |= (i >> 32);
  return i - (i >>> 1);
 }

该方法返回i的二进制中最高位的1,其他全为0的值。比如i=10时,二进制即为1010,最高位的1,其他为0,则是1000。如果i=0,则返回0。如果i为负数则固定返回-2147483648,因为负数的最高位一定是1,即有1000,0000,0000,0000,0000,0000,0000,0000。这一堆移位操作是什么意思?其实也不难理解,将i右移一位再或操作,则最高位1的右边也为1了,接着再右移两位并或操作,则右边1+2=3位都为1了,接着1+2+4=7位都为1,直到1+2+4+8+16+32=63都为1,最后用i - (i >>> 1)自然得到最终结果。

lowestOneBit方法

public static long lowestOneBit(long i) {
  return i & -i;
 }

与highestOneBit方法对应,lowestOneBit获取最低位1,其他全为0的值。这个操作较简单,先取负数,这个过程需要对正数的i取反码然后再加1,得到的结果和i进行与操作,刚好就是最低位1其他为0的值了。

numberOfLeadingZeros方法

public static int numberOfLeadingZeros(long i) {
   if (i == 0)
   return 64;
  int n = 1;
  int x = (int)(i >>> 32);
  if (x == 0) { n += 32; x = (int)i; }
  if (x >>> 16 == 0) { n += 16; x <<= 16; }
  if (x >>> 24 == 0) { n += 8; x <<= 8; }
  if (x >>> 28 == 0) { n += 4; x <<= 4; }
  if (x >>> 30 == 0) { n += 2; x <<= 2; }
  n -= x >>> 31;
  return n;
 }

该方法返回i的二进制从头开始有多少个0。i为0的话则有64个0。这里处理其实是体现了二分查找思想的,先看高32位是否为0,是的话则至少有32个0,否则左移16位继续往下判断,接着右移24位看是不是为0,是的话则至少有16+8=24个0,以此类推,直到最后得到结果。

numberOfTrailingZeros方法

public static int numberOfTrailingZeros(long i) {
  int x, y;
  if (i == 0) return 64;
  int n = 63;
  y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
  y = x <<16; if (y != 0) { n = n -16; x = y; }
  y = x << 8; if (y != 0) { n = n - 8; x = y; }
  y = x << 4; if (y != 0) { n = n - 4; x = y; }
  y = x << 2; if (y != 0) { n = n - 2; x = y; }
  return n - ((x << 1) >>> 31);
 }

与前面的numberOfLeadingZeros方法对应,该方法返回i的二进制从尾开始有多少个0。它的思想和前面的类似,也是基于二分查找思想,详细步骤不再赘述。

reverse方法

public static long reverse(long i) {
  i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
  i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
  i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
  i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
  i = (i << 48) | ((i & 0xffff0000L) << 16) |
   ((i >>> 16) & 0xffff0000L) | (i >>> 48);
  return i;
 }

该方法即是将i进行反转,反转就是第1位与第64位对调,第二位与第63位对调,以此类推。它的核心思想是先将相邻两位进行对换,比如10100111对换01011011,接着再将相邻四位进行对换,对换后为10101101,接着将相邻八位进行对换,最后把64位中中间的32位对换,然后最高16位再和最低16位对换。

toHexString和toOctalString方法

public static String toHexString(long i) {
  return toUnsignedString0(i, 4);
 }
public static String toOctalString(long i) {
  return toUnsignedString0(i, 3);
 }
public static String toBinaryString(long i) {
  return toUnsignedString0(i, 1);
 }
static String toUnsignedString0(long val, int shift) {
  int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
  int chars = Math.max(((mag + (shift - 1)) / shift), 1);
  char[] buf = new char[chars];

  formatUnsignedLong(val, shift, buf, 0, chars);
  return new String(buf, true);
 }
static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
  int charPos = len;
  int radix = 1 << shift;
  int mask = radix - 1;
  do {
   buf[offset + --charPos] = Integer.digits[((int) val) & mask];
   val >>>= shift;
  } while (val != 0 && charPos > 0);

  return charPos;
 }

这几个方法类似,合到一起讲。看名字就知道转成2进制、8进制和16进制的字符串。可以看到都是间接调用toUnsignedString0方法,该方法会先计算转换成对应进制需要的字符数,然后再通过formatUnsignedInt方法来填充字符数组,该方法做的事情就是使用进制之间的转换方法来获取对应的字符。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • 解决java 查看JDK中底层源码的实现方法

    1.点 "window"-> "Preferences" -> "Java" -> "Installed JRES"2.此时"Installed JRES"右边是列表窗格,列出了系统中的 JRE 环境,选择你的JRE,然后点边上的 "Edit...", 会出现一个窗口(Edit JRE)3.选中rt.jar文件的这一项:"c:\program files\ja

  • JDK源码之PriorityQueue解析

    一.优先队列的应用 优先队列在程序开发中屡见不鲜,比如操作系统在进行进程调度时一种可行的算法是使用优先队列,当一个新的进程被fork()出来后,首先将它放到队列的最后,而操作系统内部的Scheduler负责不断地从这个优先队列中取出优先级较高的进程执行:爬虫系统在执行时往往也需要从一个优先级队列中循环取出高优先级任务并进行抓取.可以想见,如果类似这样的任务不适用优先级进行划分的话,系统必会出现故障,例如操作系统中低优先级进程持续占用资源而高优先级进程始终在队列中等待.此外,优先队列在贪婪算法中也

  • 通过JDK源码学习InputStream详解

    概况 本文主要给大家介绍了通过JDK源码学习InputStream的相关内容,JDK 给我们提供了很多实用的输入流 xxxInputStream,而 InputStream 是所有字节输入流的抽象.包括 ByteArrayInputStream .FilterInputStream .BufferedInputStream .DataInputStream 和 PushbackInputStream 等等.下面话不多说了,来一起看看详细的介绍吧. 如何阅读JDK源码. 以看核心虚拟机(hotsp

  • JDK8中新增的原子性操作类LongAdder详解

    前言 本文主要给大家介绍了关于JDK8新增的原子性操作类LongAdder的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: LongAdder简单介绍 LongAdder类似于AtomicLong是原子性递增或者递减类,AtomicLong已经通过CAS提供了非阻塞的原子性操作,相比使用阻塞算法的同步器来说性能已经很好了,但是JDK开发组并不满足,因为在非常高的并发请求下AtomicLong的性能不能让他们接受,虽然AtomicLong使用CAS但是CAS失败后还是通过

  • 解决调试JDK源码时,不能查看变量的值问题

    前几天本来想以debug模式看一下JDK的源码,进入调试模式时才发现,根本看不到方法里面变量值的情况.为什么呢?JDK现在的版本中,编译过后,去除了里面的调试信息.解决办法是,编译那些类,使其带有调试信息,使用命令:javac -g 查看了一些相关资料,现将解决方法放到下面 1.在d:\的根目录下创建jdk7_src和jdk_debug目录. 2.在JDK_HOME目录下找到src.zip文件,并把它里面的文件解压到jdk7_src目录下,然后在解压后的目录中删除除了java.javax.org

  • 通过JDK源码分析关闭钩子详解

    关闭钩子 用户关闭关闭程序,需要做一些善后的清理工作,但问题是,某些用户不会按照推荐的方法关闭应用程序,肯能导致善后工作无法进行.像tomcat调用server的start方法启动容器,然后会逐级调用start.当发出关闭命令是会启动关闭功能,但是关闭可能会有一些意外产生,导致应用程序没有进入到我们制定的关闭方法去.如何解决这个问题呢,使得即使有意外也能正常进入关闭流程. 好在java提供了一种优雅的方式去解决这种问题.使得关闭的善后处理的代码能执行.java的关闭钩子能确保总是执行,无论用户如

  • 通过JDK源码角度分析Long类详解

    概况 Java的Long类主要的作用就是对基本类型long进行封装,提供了一些处理long类型的方法,比如long到String类型的转换方法或String类型到long类型的转换方法,当然也包含与其他类型之间的转换方法.除此之外还有一些位相关的操作. Java long数据类型 long数据类型是64位有符号的Java原始数据类型.当对整数的计算结果可能超出int数据类型的范围时使用. long数据类型范围是-9,223,372,036,854,775,808至9,223,372,036,85

  • Java从JDK源码角度对Object进行实例分析

    Object是所有类的父类,也就是说java中所有的类都是直接或者间接继承自Object类.比如你随便创建一个classA,虽然没有明说,但默认是extendsObject的. 后面的三个点"..."表示可以接受若干不确定数量的参数.老的写法是Objectargs[]这样,但新版本的java中推荐使用...来表示.例如 publicvoidgetSomething(String...strings)(){} object是java中所有类的父类,也就是说所有的类,不管是自己创建的类还是

  • Java源码角度分析HashMap用法

    -HashMap- 优点:超级快速的查询速度,时间复杂度可以达到O(1)的数据结构非HashMap莫属.动态的可变长存储数据(相对于数组而言). 缺点:需要额外计算一次hash值,如果处理不当会占用额外的空间. -HashMap如何使用- 平时我们使用hashmap如下 Map<Integer,String> maps=new HashMap<Integer,String>(); maps.put(1, "a"); maps.put(2, "b&quo

  • 从源码角度分析Android的消息机制

    前言 说到Android的消息机制,那么主要的就是指的Handler的运行机制.其中包括MessageQueue以及Looper的工作过程. 在开始正文之前,先抛出两个问题: 为什么更新UI的操作要在主线程中进行? Android中为什么主线程不会因为Looper.loop()里的死循环卡死? UI线程的判断是在ViewRootImpl中的checkThread方法中完成的. 对于第一个问题,这里给一个简单的回答: 如果可以在子线程中修改UI,多线程的并发访问可能会导致UI控件的不可预期性,采用

  • RocketMQ源码解析topic创建机制详解

    目录 1. RocketMQ Topic创建机制 2. 自动Topic 3. 手动创建--预先创建 通过界面控制台创建 1. RocketMQ Topic创建机制 以下源码基于Rocket MQ 4.7.0 RocketMQ Topic创建机制分为两种:一种自动创建,一种手动创建.可以通过设置broker的配置文件来禁用或者允许自动创建.默认是开启的允许自动创建 autoCreateTopicEnable=true/false 下面会结合源码来深度分析一下自动创建和手动创建的过程. 2. 自动T

  • HashMap源码中的位运算符&详解

    引言 最近在读HashMap源码的时候,发现在很多运算符替代常规运算符的现象.比如说用hash & (table.length-1) 来替代取模运算hash&(table.length):用if((e.hash & oldCap) == 0)判断扩容后元素的位置等等. 1.取模运算符%底层原理 ​总所周知,位运算&直接对二进制进行运算:而对于取模运算符%:a % b 相当于 a - a / b * b,底层实际上是除法器,究其根源也是由底层的减法和加法共同完成.所以其运行效

  • php源码 fsockopen获取网页内容实例详解

    PHP fsockopen函数说明: Open Internet or Unix domain socket connection(打开套接字链接) Initiates a socket connection to the resource specified by target . fsockopen() returns a file pointer which may be used together with the other file functions (such as fgets(

  • Spring-boot 2.3.x源码基于Gradle编译过程详解

    spring Boot源码编译 1. git上下拉最新版的spring Boot 下载:git clone git@github.com:spring-projects/spring-boot.git,建议下载release版本,不会出现奇奇怪怪的错误 2.修改下载源, gradle\wrapper中的配置文件 gradle-wrapper.properties distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists #d

  • 基于Spring Boot的Environment源码理解实现分散配置详解

    前提 org.springframework.core.env.Environment是当前应用运行环境的公开接口,主要包括应用程序运行环境的两个关键方面:配置文件(profiles)和属性.Environment继承自接口PropertyResolver,而PropertyResolver提供了属性访问的相关方法.这篇文章从源码的角度分析Environment的存储容器和加载流程,然后基于源码的理解给出一个生产级别的扩展. 本文较长,请用一个舒服的姿势阅读. Environment类体系 Pr

  • Java面试题 从源码角度分析HashSet实现原理

    面试官:请问HashSet有哪些特点? 应聘者:HashSet实现自set接口,set集合中元素无序且不能重复: 面试官:那么HashSet 如何保证元素不重复? 应聘者:因为HashSet底层是基于HashMap实现的,当你new一个HashSet时候,实际上是new了一个map,执行add方法时,实际上调用map的put方法,value始终是PRESENT,所以根据HashMap的一个特性: 将一个key-value对放入HashMap中时,首先根据key的hashCode()返回值决定该E

随机推荐