python使用matplotlib画柱状图、散点图

本文实例为大家分享了python使用matplotlib画柱状图、散点图的具体代码,供大家参考,具体内容如下

柱状图(plt.bar)

代码与注释

import numpy as np
from matplotlib import pyplot as plt
plt.figure(figsize=(9,6))
n = 8
X = np.arange(n)+1
#X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
#uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5,1.0,n)
Y2 = np.random.uniform(0.5,1.0,n)
plt.bar(X,Y1,width = 0.35,facecolor = 'lightskyblue',edgecolor = 'white')
#width:柱的宽度
plt.bar(X+0.35,Y2,width = 0.35,facecolor = 'yellowgreen',edgecolor = 'white')
#水平柱状图plt.barh,属性中宽度width变成了高度height
#打两组数据时用+
#facecolor柱状图里填充的颜色
#edgecolor是边框的颜色
#想把一组数据打到下边,在数据前使用负号
#plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
#给图加text
for x,y in zip(X,Y1):
  plt.text(x+0.3, y+0.05, '%.2f' % y, ha='center', va= 'bottom')

for x,y in zip(X,Y2):
  plt.text(x+0.6, y+0.05, '%.2f' % y, ha='center', va= 'bottom')
plt.ylim(0,+1.25)
plt.show()

结果

散点图(plt.scatter)

代码与注释

plt.figure(figsize=(9,6))
n=1000
#rand 均匀分布和 randn高斯分布
x=np.random.randn(1,n)
y=np.random.randn(1,n)
T=np.arctan2(x,y)
plt.scatter(x,y,c=T,s=25,alpha=0.4,marker='o')
#T:散点的颜色
#s:散点的大小
#alpha:是透明程度
plt.show()

结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • Python使用matplotlib 模块scatter方法画散点图示例

    本文实例讲述了Python使用matplotlib 模块scatter方法画散点图.分享给大家供大家参考,具体如下: # -*-coding:utf-8-*- import matplotlib.pyplot as plt y = [12, 7, 1, 2, 6, 3, 7, 5, 12, 6, 14, 10, 6, 7, 1, 2, 9, 3, 4, 4, 4, 5, 4, 6, 9, 5, \ 2, 1, 2, 1, 7, 6, 43, 15, 18, 52, 39, 53, 39, 17,

  • Python使用matplotlib绘制余弦的散点图示例

    本文实例讲述了Python使用matplotlib绘制余弦的散点图.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import pylab as pl a = np.arange(0,2.0*np.pi,0.1) b = np.cos(a) #绘制散点图 pl.scatter(a,b) pl.show() 二 运行结果 三 修改散点符号代码 import numpy as np import pylab as pl a = np.arange(0,2.0*np

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • Python使用matplotlib绘制多个图形单独显示的方法示例

    本文实例讲述了Python使用matplotlib绘制多个图形单独显示的方法.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspace(0,2*np.pi,500) #创建函数值数组 y1 = np.sin(x) y2 = np.cos(x) y3 = np.sin(x*x) #创建图形 plt.figure(1) ''' 意思是在一个2行2列共4个子图的图中,

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python+matplotlib绘制饼图散点图实例代码

    本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下. 首先看下演示效果 实例代码: import numpy as np import matplotlib.pyplot as plt # first define the ratios r1 = 0.2 # 20% r2 = r1 + 0.4 # 40% # define some sizes of the scatter marker sizes = n

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • Python Matplotlib实现三维数据的散点图绘制

    一.背景 近期项目即将开展,计划第一步就是实现数据的可视化,所以先学习一下数据展示相关Demo.选用Python2.7与Matplotlib来实现,平台采用Pycharm,值得一提的是,Matplotlib的安装前首先要安装Numpy包,但是在完成Numpy的安装之后,楼主不能在PyCharm平台下进行自动安装,或者CMD中使用类似pip install Matplotlib,参考网上解决方案后采用直接去官网下载相应的安装包直接运行安装到相关目录下.在此就不赘述了. 二. 参考 Python语言

  • python使用matplotlib绘制柱状图教程

    Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s

随机推荐