C语言压缩文件和用MD5算法校验文件完整性的实例教程
使用lzma SDK对7z文件简单解压缩
有时候我们只需要单纯对lzma算法压缩的7z文件进行解压,有时需要在嵌入式设备上解压,使用p7zip虽然支持多种格式,但是不容易裁剪,使用lzma SDK是首选:
可以在这里找到各种版本:http://zh.sourceforge.jp/projects/sfnet_sevenzip/releases/
我下载了4.65版本,这个对文件名编码支持没有9.20的好,中文可能有问题,但是我的需求不需要支持中文文件名,所以足够用了。
解压后先看一下7z这个工程,这个示例只有文件解压操作,仿照就可以写一个更加精简的解压函数:
需要的文件可以参考实例:
修改7zMain.c即可。
我们的目的是写一个函数extract7z,接收参数是7z文件路径,输出文件路径,便可执行全部解压。
主要调用函数:
SRes SzArEx_Open(CSzArEx *p, ILookInStream *inStream, ISzAlloc *allocMain, ISzAlloc *allocTemp); SRes SzAr_Extract( const CSzArEx *p, ILookInStream *inStream, UInt32 fileIndex, UInt32 *blockIndex, Byte **outBuffer, size_t *outBufferSize, size_t *offset, size_t *outSizeProcessed, ISzAlloc *allocMain, ISzAlloc *allocTemp);
我们先在Windows下编译:
完整代码如下:
/* 7zMain.c - Test application for 7z Decoder */ #include <stdlib.h> #include <stdio.h> #include <string.h> #define LOGD printf #define LOGE printf #include "7zCrc.h" #include "7zFile.h" #include "7zVersion.h" #include "7zAlloc.h" #include "7zExtract.h" #include "7zIn.h" int MY_CDECL extract7z(const char* srcFile, const char* dstPath) { CFileInStream archiveStream; CLookToRead lookStream; CSzArEx db; SRes res; ISzAlloc allocImp; ISzAlloc allocTempImp; char outPath[1024] = { 0 }; LOGD("7z ANSI-C Decoder " MY_VERSION_COPYRIGHT_DATE "\n"); if (InFile_Open(&archiveStream.file, srcFile)) {//open 7z file LOGE("can not open input file\n"); return 1; } FileInStream_CreateVTable(&archiveStream); LookToRead_CreateVTable(&lookStream, False); lookStream.realStream = &archiveStream.s; LookToRead_Init(&lookStream); allocImp.Alloc = SzAlloc; allocImp.Free = SzFree; allocTempImp.Alloc = SzAllocTemp; allocTempImp.Free = SzFreeTemp; CrcGenerateTable(); SzArEx_Init(&db); res = SzArEx_Open(&db, &lookStream.s, &allocImp, &allocTempImp); if(res == SZ_OK) { Int32 i; UInt32 blockIndex = 0xFFFFFFFF; /* it can have any value before first call (if outBuffer = 0) */ Byte *outBuffer = 0; /* it must be 0 before first call for each new archive. */ size_t outBufferSize = 0; /* it can have any value before first call (if outBuffer = 0) */ LOGD("Total file/directory count[%d]\n", db.db.NumFiles); for (i = db.db.NumFiles - 1; i >= 0; i--) { size_t offset; size_t outSizeProcessed; CSzFileItem *f = db.db.Files + i; strcpy(outPath, dstPath); strcat(outPath, "/"); strcat(outPath, f->Name); if (f->IsDir) { //dir LOGD("dir [%s]\n", outPath); mkdir(outPath); continue; }else{ //file LOGD("file [%s]\n", outPath); res = SzAr_Extract(&db, &lookStream.s, i, &blockIndex, &outBuffer, &outBufferSize, &offset, &outSizeProcessed, &allocImp, &allocTempImp); if (res != SZ_OK){ break; }else{ CSzFile outFile; size_t processedSize; if (OutFile_Open(&outFile, outPath)) { LOGE("can not open output file\n"); res = SZ_ERROR_FAIL; break; } processedSize = outSizeProcessed; if (File_Write(&outFile, outBuffer + offset, &processedSize) != 0 || processedSize != outSizeProcessed) { LOGE("can not write output file\n"); res = SZ_ERROR_FAIL; break; } if (File_Close(&outFile)) { LOGE("can not close output file\n"); res = SZ_ERROR_FAIL; break; } } } } IAlloc_Free(&allocImp, outBuffer); } SzArEx_Free(&db, &allocImp); File_Close(&archiveStream.file); if (res == SZ_OK) { LOGD("Everything is Ok\n"); return 0; } if (res == SZ_ERROR_UNSUPPORTED ) LOGE("decoder doesn't support this archive\n"); else if (res == SZ_ERROR_MEM ) LOGE("can not allocate memory\n"); else if (res == SZ_ERROR_CRC ) LOGE("CRC error\n"); else LOGE("ERROR #%d\n", res); return 1; } int main(int numargs, char *args[]) { return extract7z(args[1], args[2]); }
我用的是Eclipse,使用Mingw编译。
执行效果,能正确解压。
这样的解压只能适用简单的解压,不支持加密,参数2的输出文件路径中的所有文件夹都必须存在,压缩包中文件夹不需要存在,解压时会自动创建。
压缩包中的文件夹不能为中文,否则乱码。
使用MD5算法验证文件完整性或密码正确性
MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD5实现。
将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。
MD5的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。
MD5在实际应用中通常有两种用法,一种是计算一个字符串的MD5值,常用于密码相关的操作;另一种是用于计算一个文件的MD5值,一般用于网络传输中验证文件是否出错。
下面是C语言的MD5计算程序,来自Stardict,网上流行的代码都大同小异:
md5.h
#ifndef MD5_H #define MD5_H #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STDINT_H #include <stdint.h> typedef uint32_t uint32; #else /* A.Leo.: this wont work on 16 bits platforms ;) */ typedef unsigned uint32; #endif #define MD5_FILE_BUFFER_LEN 1024 struct MD5Context { uint32 buf[4]; uint32 bits[2]; unsigned char in[64]; }; void MD5Init(struct MD5Context *context); void MD5Update(struct MD5Context *context, unsigned char const *buf, unsigned len); void MD5Final(unsigned char digest[16], struct MD5Context *context); void MD5Transform(uint32 buf[4], uint32 const in[16]); int getBytesMD5(const unsigned char* src, unsigned int length, char* md5); int getStringMD5(const char* src, char* md5); int getFileMD5(const char* path, char* md5); /* * This is needed to make RSAREF happy on some MS-DOS compilers. */ typedef struct MD5Context MD5_CTX; #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* !MD5_H */
源文件:
md5.c
#include <string.h> /* for memcpy() */ #include <stdio.h> #include "md5.h" #ifndef HIGHFIRST #define byteReverse(buf, len) /* Nothing */ #else void byteReverse(unsigned char *buf, unsigned longs); #ifndef ASM_MD5 /* * Note: this code is harmless on little-endian machines. */ void byteReverse(unsigned char *buf, unsigned longs) { uint32 t; do { t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | ((unsigned) buf[1] << 8 | buf[0]); *(uint32 *) buf = t; buf += 4; }while (--longs); } #endif #endif static void putu32(uint32 data, unsigned char *addr) { addr[0] = (unsigned char) data; addr[1] = (unsigned char) (data >> 8); addr[2] = (unsigned char) (data >> 16); addr[3] = (unsigned char) (data >> 24); } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void MD5Init(struct MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) { uint32 t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32) len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *) ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void MD5Final(unsigned char digest[16], struct MD5Context *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *) ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ //((uint32 *) ctx->in)[14] = ctx->bits[0]; //((uint32 *) ctx->in)[15] = ctx->bits[1]; putu32(ctx->bits[0], ctx->in + 56); putu32(ctx->bits[1], ctx->in + 60); MD5Transform(ctx->buf, (uint32 *) ctx->in); byteReverse((unsigned char *) ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ } #ifndef ASM_MD5 /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ void MD5Transform(uint32 buf[4], uint32 const in[16]) { register uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * get MD5 of a byte buffer */ int getBytesMD5(const unsigned char* src, unsigned int length, char* md5) { unsigned char i = 0; unsigned char md5Bytes[16] = { 0 }; MD5_CTX context; if (src == NULL || md5 == NULL) { return -1; } MD5Init(&context); MD5Update(&context, src, length); MD5Final(md5Bytes, &context); for (i = 0; i < 16; i++) { sprintf(md5, "%02X", md5Bytes[i]); md5 += 2; } *md5 = '\0'; return 0; } /* * get MD5 for a string */ int getStringMD5(const char* src, char* md5) { return getBytesMD5((unsigned char*) src, strlen((char*) src), md5); } /** * get MD5 of a file */ int getFileMD5(const char* path, char* md5) { FILE* fp = NULL; unsigned char buffer[MD5_FILE_BUFFER_LEN] = { 0 }; int count = 0; MD5_CTX context; unsigned char md5Bytes[16] = { 0 }; int i; if (path == NULL || md5 == NULL) { return -1; } fp = fopen(path, "rb"); if (fp == NULL) { return -1; } MD5Init(&context); while ((count = fread(buffer, 1, MD5_FILE_BUFFER_LEN, fp)) > 0) { MD5Update(&context, buffer, count); } MD5Final(md5Bytes, &context); for (i = 0; i < 16; i++) { sprintf(md5, "%02X", md5Bytes[i]); md5 += 2; } *md5 = '\0'; return 0; } #endif
下面是调用函数计算MD5的代码:
main.c
#include <stdio.h> #include <string.h> #include "md5.h" int main(int c, char** v){ char buffer[128]; getStringMD5("hello world", buffer); printf("%s\n", buffer); getFileMD5("hello.pdf", buffer); printf("%s\n", buffer); return 0; }
计算无误: