Python Process多进程实现过程

进程的概念

程序是没有运行的代码,静态的;

进程是运行起来的程序,进程是一个程序运行起来之后和资源的总称;

程序只有一个,但同一份程序可以有多个进程;例如,电脑上多开QQ;

程序和进程的区别在于有没有资源,进程有资源而程序没有资源,进程是一个资源分配的基本单元;
程序在没运行的时候没有资源,没有显卡,没有网卡,等等;双击运行后有摄像头,有网速等等,就叫做进程;

进程的状态

进程状态图

  • 就绪态:运行的条件都已经慢去,正在等在cpu执行
  • 执行态:cpu正在执行其功能
  • 等待态:等待某些条件满足,例如一个程序sleep了,此时就处于等待态

使用Process完成多任务

进程的使用步骤和线程的使用步骤基本一致;

进程的使用步骤:

  • 导入multiprocessing;
  • 编写多任务所所需要的函数;
  • 创建multiprocessing.Process类的实例对象并传入函数引用;
  • 调用实例对象的start方法,创建子线程。

进程使用步骤图示:

进程使用步骤代码

import time
import multiprocessing
def sing():
  while True:
    print("-----sing-----")
    time.sleep(1)
def dance():
  while True:
    print("-----dance-----")
    time.sleep(1)
def main():
  p1 = multiprocessing.Process(target=sing)
  p2 = multiprocessing.Process(target=dance)
  p1.start()
  p2.start()
if __name__ == "__main__":
  main()

运行结果:

-----sing-----
-----dance-----
-----sing-----
-----dance-----
-----sing-----
-----dance-----
......

进程:

  • 主进程有什么,子进程就会有什么资源;
  • 线程能创建多任务,进程也能创建多任务,但进程耗费的资源比较大;
  • 所以运行的进程数,不一定越多越好;
  • 当创建子进程时,会复制一份主进程的资源,代码,内存等,但又会有自己不同的地方,比如pid等;
  • 我们可以理解为多进程之间共享代码,即只有一份代码,但有多个指向同一代码的箭头;
  • 能共享的就共享,不能共享的就拷贝一份;不需要修改的就共享,要修改的时候就给你拷贝一份,这就是写时拷贝;

获取进程id

获取进程id代码

from multiprocessing import Process
import osdef run_proc():
  """子进程要执行的代码"""
  print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号
  print('子进程将要结束...')

if __name__ == '__main__':
  print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号
  p = Process(target=run_proc)
  p.start()

进程和线程对比

进程和线程的区别

  • 进程是系统进行资源分配和调度的一个独立单位;
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,即是操作系统调度的单位,它是比进程更小的能独立运行的基本单位;
  • 一个程序至少有一个进程,一个进程至少有一个线程;
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高;
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率;
  • 线程不能够独立执行,必须依存在进程中;
  • 进程先有,才有的线程;
  • 线程用资源去做事;
  • 多线程能实现多任务是指在一个进程资源里面有多个箭头;多线程是在同一个资源里面有多个箭头执行同一份代码;
  • 多进程的多任务是又开启了一份资源,在这个资源里面又有一个箭头;
  • 进程执行方式1:在一份资源里面有多个箭头在执行;
  • 进程执行方式2:有多份资源,在每一份资源里面有一个箭头执行代码;
  • 线程执行开销小,但不利于资源的管理和保护,进程正好相反;
  • 开发中还是多线程用的多;

通过队列完成进程间通信

队列使用语法

# 创建队列:
from multiprocessing import Queue
q = Queue(3)
# 往队列中添加数据:
q.put(xxx)
# 从队列中获取数据:
q.get()

通过队列完成进程间通信代码

from multiprocessing import Queue
import multiprocessing
def download_data(q):
  """模拟这是从网上下载数据"""
  data = [11, 22, 33]
  for i in data:
    q.put(i)
  print("数据下载完成")
def deal_data(q):
  """模拟处理从网上下载下来的数据"""
  data_list = []
  while True:
    data = q.get()
    data_list.append(data)
    if q.empty():
      break
  print("处理数据结束,数据为:", data_list)
def main():
  q = Queue(3)
  p1 = multiprocessing.Process(target=download_data, args=(q,))
  p2 = multiprocessing.Process(target=deal_data, args=(q,))
  p1.start()
  time.sleep(1)
  p2.start()
if __name__ == '__main__':
  main()

运行结果:

数据下载完成

处理数据结束,数据为: [11, 22, 33]

进程池完成多任务

进程池

进程池的概念

因为进程的创建和销毁是需要大量的资源的,为了减少消耗,当我们在处理多任务时,比如100个任务,我们可以先创建10个进程,然后用这10个进程来执行者100个任务,就可以重复使用进程,达到节约资源的目的了,而这个就可以使用进程池。

进程池的创建

任务数固定且较少,用普通的进程即可;任务数不确定,且比较多,就用进程池;

进程池不会等待进程执行完毕,我们需要使用po.join()让主进程等待进程池中的进程执行完;且po.close()必须在join前面;小编整理一套Python资料和PDF,有需要Python学习资料可以加学习群:631441315 ,反正闲着也是闲着呢,不如学点东西啦~~

创建进程池语法

# 创建进程池
from multiprocessing import Pool
po = Pool(3)

# 给进程池传递任务和参数
po.asyn(sing, (num,))

# 让进程池等待子进程执行完
po.close()
po.join()

进程池pool示例

from multiprocessing import Pool
import os, time, random
def worker(msg):
  t_start = time.time()
  print("%s开始执行,进程号为%d" % (msg, os.getpid()))
  # random.random()随机生成0~1之间的浮点数
  time.sleep(random.random() * 2)
  t_stop = time.time()
  print(msg, "执行完毕,耗时%0.2f" % (t_stop - t_start))
def main():
  po = Pool(3) # 定义一个进程池,最大进程数3
  for i in range(0, 10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker, (i,))

  print("----start----")
  po.close() # 关闭进程池,关闭后po不再接收新的请求
  po.join() # 等待po中所有子进程执行完成,必须放在close语句之后
  print("-----end-----")
if __name__ == '__main__':
  main()

执行结果:

----start----
0开始执行,进程号为7812
1开始执行,进程号为9984
2开始执行,进程号为1692
执行完毕,耗时0.65
3开始执行,进程号为9984
执行完毕,耗时1.08
4开始执行,进程号为7812
执行完毕,耗时1.82
5开始执行,进程号为1692
执行完毕,耗时1.12
6开始执行,进程号为7812
执行完毕,耗时1.35
7开始执行,进程号为9984
执行完毕,耗时0.11
8开始执行,进程号为9984
执行完毕,耗时0.50
9开始执行,进程号为7812
执行完毕,耗时0.65
执行完毕,耗时0.70
执行完毕,耗时0.74
-----end-----

多进程拷贝文件夹

多任务文件夹copy

步骤思路:

1.获取用户要拷贝的文件夹的名字;

2.创建一个新的文件夹;

3.获取文件夹的所有待拷贝的文件名;listdir()

4.创建进程池;

5.复制原文件夹中的文件,到新文件夹的文件中去;

多任务拷贝文件代码

import os
from multiprocessing import Pool
def copy_file(file, old_folder, new_folder):

  old_f = open(old_folder+"/"+file, "rb")
  data = old_f.read()
  old_f.close()

  new_f = open(new_folder+"/"+file, "wb")
  new_f.write(data)
  new_f.close()
  print("创建文件成功:", file)
def main():
  # 1.获取要拷贝的文件夹
  old_folder = input("请输入你要拷贝的文件夹:")
  # 2.创建新文件夹
  new_folder = old_folder + "_复件"
  try:
    os.mkdir(new_folder)
    print("创建文件夹成功")
  except Exception as e:
    pass
  # 3.获取文件夹中所有待拷贝的文件,listdir()
  files_list = os.listdir(old_folder)
  # print(files_list)
  # 4.创建进程池
  po = Pool(5)
  for file in files_list:
    # 向进程池中添加复制文件的任务
    po.apply_async(copy_file, args=(file, old_folder, new_folder))
  # 复制原文件夹中的文件,到新文件夹中
  po.close()
  po.join()
if __name__ == '__main__':
  main()

在完成文件夹拷贝后,增加了一个需求,显示拷贝文件的进度条,怎么办?

多任务拷贝文件并显示进度条

如果要在进程池中使用Queue,要使用from multiprocessing import Manager ,使用Manager().Queue();

显示进度条思路:

  • 创建一个队列;
  • 往拷贝文件的函数中传入队列,拷贝好一个文件就往q中传入该文件名;
  • 在主函数中计算listdir()中的所有文件数量;
  • 在主函数中定义一个num,初始值为0;
  • 在主函数中定义一个while true,从q中获取文件每获取一个文件们就将num+1
  • 计算,如果num的值大于等于总文件数量,就break;
  • 使用已拷贝文件数量num除以总文件数量,即为拷贝的进度,使用开头\r 和end=""让显示进度不换行,如下:

print("\r已拷贝文件%.2f %%" % (copy_ok_file_num*100/all_file_len), end="")

多任务拷贝文件并显示进度条代码:

import os
from multiprocessing import Pool, Manager
def copy_file(q, file, old_folder, new_folder):
  old_f = open(old_folder+"/"+file, "rb")
  data = old_f.read()
  old_f.close()
  new_f = open(new_folder+"/"+file, "wb")
  new_f.write(data)
  new_f.close()
  q.put(file)
def main():
  # 1.获取要拷贝的文件夹
  old_folder = input("请输入你要拷贝的文件夹:")
  # 2.创建新文件夹
  new_folder = old_folder + "_复件"
  try:
    os.mkdir(new_folder)
    print("创建文件夹成功")
  except Exception as e:
    pass
  # 3.获取文件夹中所有待拷贝的文件,listdir()
  files_list = os.listdir(old_folder)
  # 4.创建进程池
  po = Pool(5)
  # 5.创建队列
  q = Manager().Queue()
  # 6.复制原文件夹中的文件,到新文件夹中
  for file in files_list:
    # 向进程池中添加复制文件的任务
    po.apply_async(copy_file, args=(q, file, old_folder, new_folder))
  all_file_len = len(files_list)
  po.close()
  # po.join()
  copy_ok_file_num = 0
  while True:
    file = q.get()
    copy_ok_file_num += 1
    print("已拷贝文件%.2f %%" % (copy_ok_file_num*100/all_file_len))
    # print("\r已拷贝文件%.2f %%" % (copy_ok_file_num*100/all_file_len), end="")
    if copy_ok_file_num >= all_file_len:
      break
  print()
if __name__ == '__main__':
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多进程库multiprocessing中进程池Pool类的使用详解

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

  • Python3多进程 multiprocessing 模块实例详解

    本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python多进程multiprocessing用法实例分析

    本文实例讲述了Python多进程multiprocessing用法.分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 简单的创建进程: import multiprocessing def worker(num): """thread worker function""" print 'Wor

  • python基于multiprocessing的多进程创建方法

    本文实例讲述了python基于multiprocessing的多进程创建方法.分享给大家供大家参考.具体如下: import multiprocessing import time def clock(interval): while True: print ("the time is %s"% time.time()) time.sleep(interval) if __name__=="__main__": p = multiprocessing.Process

  • Python Multiprocessing多进程 使用tqdm显示进度条的实现

    1.背景 在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度 2.函数要求 笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法: pip install pathos 安装完成后 from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm 这边使用pathos的原因是因为,multip

  • Python多进程multiprocessing.Pool类详解

    multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

  • Python Process多进程实现过程

    进程的概念 程序是没有运行的代码,静态的: 进程是运行起来的程序,进程是一个程序运行起来之后和资源的总称: 程序只有一个,但同一份程序可以有多个进程:例如,电脑上多开QQ: 程序和进程的区别在于有没有资源,进程有资源而程序没有资源,进程是一个资源分配的基本单元: 程序在没运行的时候没有资源,没有显卡,没有网卡,等等:双击运行后有摄像头,有网速等等,就叫做进程: 进程的状态 进程状态图 就绪态:运行的条件都已经慢去,正在等在cpu执行 执行态:cpu正在执行其功能 等待态:等待某些条件满足,例如一

  • Python Process创建进程的2种方法详解

    前面介绍了使用 os.fork() 函数实现多进程编程,该方法最明显的缺陷就是不适用于 Windows 系统.本节将介绍一种支持 Python 在 Windows 平台上创建新进程的方法. Python multiprocessing 模块提供了 Process 类,该类可用来在 Windows 平台上创建新进程.和使用 Thread 类创建多线程方法类似,使用 Process 类创建多进程也有以下 2 种方式: 直接创建 Process 类的实例对象,由此就可以创建一个新的进程: 通过继承 P

  • python multiprocessing 多进程并行计算的操作

    python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制. 下面我们对multiprocessing中的Pool和Process类做介绍. Pool 采用Pool进程池对任务并行处理更加方便,我们可以指定并行的CPU个数,然后 Pool 会自动把任务放到进程池中运行. Pool 包含了多个并行函数.

  • Python解决多进程间访问效率低的方法总结

    目录 前言 使用进程间Queue效率问题场景 采用管道模式解决 总结 前言 最近在解决一些算法优化的问题,为了实时性要求,必须精益求精的将资源利用率用到极致.同时对算法中一些处理进行多线程或者多进程处理. 在对代码的调试过程中,发现在进程间队列使用耗时很长,特别是图片这种比较大的数据的时候. 可以先看一下我下面的demo是不是符合你的场景. 下面还有我的解决方案. 使用进程间Queue效率问题场景 代码样例如下,模拟从两个视频读取图片帧进行处理. #!/user/bin/env python #

  • 详解Python实现多进程异步事件驱动引擎

    本文介绍了详解Python实现多进程异步事件驱动引擎,分享给大家,具体如下: 多进程异步事件驱动逻辑 逻辑 code # -*- coding: utf-8 -*- ''' author: Jimmy contact: 234390130@qq.com file: eventEngine.py time: 2017/8/25 上午10:06 description: 多进程异步事件驱动引擎 ''' __author__ = 'Jimmy' from multiprocessing import

  • Python实现多进程共享数据的方法分析

    本文实例讲述了Python实现多进程共享数据的方法.分享给大家供大家参考,具体如下: 示例一: # -*- coding:utf-8 -*- from multiprocessing import Process, Manager import time import random def kkk(a_list, number): for i in range(10): a_list.append(i) time.sleep(random.randrange(2)) print('这是进程{}

  • 基于python的多进程共享变量正确打开方式

    多进程共享变量和获得结果 由于工程需求,要使用多线程来跑一个程序.但是因为听说python的多线程是假的,于是使用多进程,反正任务需要共享的参数少. 查阅资料,发现实现多进程主要使用Multiprocessing,有两种方式,一种是Process,另一种是Pool. p = Process(target=fun,args=(args)) 再通过p.start()来启动一个子进程,通过p.join()方法来使得子进程运行结束后再执行父进程. 但是这样很烦,还要写个for 循环来开n个线程和join

  • Python multiprocessing多进程原理与应用示例

    本文实例讲述了Python multiprocessing多进程原理与应用.分享给大家供大家参考,具体如下: multiprocessing包是Python中的多进程管理包,可以利用multiprocessing.Process对象来创建进程,Process对象拥有is_alive().join([timeout]).run().start().terminate()等方法. multprocessing模块的核心就是使管理进程像管理线程一样方便,每个进程有自己独立的GIL,所以不存在进程间争抢

  • 对Python的多进程锁的使用方法详解

    很多时候,我们需要在多个进程中同时写一个文件,如果不加锁机制,就会导致写文件错乱 这个时候,我们可以使用multiprocessing.Lock() 我一开始是这样使用的: import multiprocessing lock = multiprocessing.Lock() class MatchProcess(multiprocessing.Process): def __init__(self, threadId, mfile, lock): multiprocessing.Proces

  • python使用多进程的实例详解

    python多线程适合IO密集型场景,而在CPU密集型场景,并不能充分利用多核CPU,而协程本质基于线程,同样不能充分发挥多核的优势. 针对计算密集型场景需要使用多进程,python的multiprocessing与threading模块非常相似,支持用进程池的方式批量创建子进程. •创建单个Process进程(使用func) 只需要实例化Process类,传递函数给target参数,这点和threading模块非常的类似,args为函数的参数 import os from multiproce

随机推荐