python关于矩阵重复赋值覆盖问题的解决方法

本文实例讲述了python关于矩阵重复赋值覆盖问题的解决方法。分享给大家供大家参考,具体如下:

import itertools
import numpy as np
comb = list(itertools.combinations(list(range(regions)), 2))
bands_info = []
coeff = np.zeros([bands, len(comb)])
for cla in range(classes):
  class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]
  for bs in range(bands):
    n = bs*regions
    for i in range(len(comb)):
      index1 = comb[i][0]+n
      index2 = comb[i][1]+n
      part1 = class_info[:, index1]
      part2 = class_info[:, index2]
      coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]
  bands_info.append(coeff.reshape([1,-1]))
coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

例如这个循环赋值过程,最终得出来的结果是bands_info这个List里面每一个矩阵都是一样的,这是为什么呢?我一开始也在这里纠结了很长时间,思来想去感觉没错的呀。后来想想以前学的C语言知识,才有点明白。原来python里面有浅层copy和深层copy这一说,同是一个矩阵的话占用的是同一个地址,在里面进行重复赋值的话前面的值都会被覆盖掉。不只是当前变量被覆盖掉,就是你之后用到这个变量的也会被覆盖。比如说你a的变量被b覆盖了,那你后面用到a的变量的地方,a的值也会变成b的值。是不是很可怕。

那么应该怎么进行修改呢?

import itertools
import numpy as np
comb = list(itertools.combinations(list(range(regions)), 2))
bands_info = []
for cla in range(classes):
  coeff = np.zeros([bands, len(comb)])
  class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]
  for bs in range(bands):
    n = bs*regions
    for i in range(len(comb)):
      index1 = comb[i][0]+n
      index2 = comb[i][1]+n
      part1 = class_info[:, index1]
      part2 = class_info[:, index2]
      coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]
  bands_info.append(coeff.reshape([1,-1]))
coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

改成这样就可以了。就是将初始矩阵在循环里在重新设定一遍,意思相当就是给了一次新的地址,再进行复制的话就不会覆盖前面的结果了。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 动态规划之矩阵连乘问题Python实现方法

    本文实例讲述了动态规划之矩阵连乘问题Python实现方法.分享给大家供大家参考,具体如下: 给定n个矩阵{A1,A2,-,An},其中Ai与Ai+1是可乘的,i=1,2 ,-,n-1.如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少. 例如: A1={30x35} ; A2={35x15} ;A3={15x5} ;A4={5x10} ;A5={10x20} ;A6={20x25} ; 结果为:((A1(A2A3))((A4A5)A6))  最小的乘次为15125.

  • Python实现矩阵转置的方法分析

    本文实例讲述了Python实现矩阵转置的方法.分享给大家供大家参考,具体如下: 前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加.例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等. 其实不动脑筋的话,用个二重循环很容易写出来: def trans(m): a = [[] for i in m[0]] for i in m: f

  • python实现矩阵乘法的方法

    本文实例讲述了python实现矩阵乘法的方法.分享给大家供大家参考.具体实现方法如下: def matrixMul(A, B): res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): res[i][j] += A[i][k] * B[k][j] return res def matrixMul2(A, B):

  • Python解决线性代数问题之矩阵的初等变换方法

    定义一个矩阵初等行变换的类 class rowTransformation(): array = ([[],[]]) def __init__(self,array): self.array = array def __mul__(self, other): pass # 交换矩阵的两行 def exchange_two_lines(self,x,y): a = self.array[x-1:x].copy() self.array[x-1:x] = self.array[y-1:y] self

  • Python矩阵常见运算操作实例总结

    本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

  • Python使用稀疏矩阵节省内存实例

    推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1.不能很好的同时支持data[i, ...].data[..., j].data[i, j]快速切片: 2.由于数据保存在内存中,不能很好的支持海量数据处理. 要支持data[i, ...].data[..., j]的快速切片,需要i或者j的数据集中存储:同时,为了保存海量的数据,也需

  • Python中矩阵创建和矩阵运算方法

    矩阵创建 1.from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2.data2=mat(ones((2,4))) 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int 3.data5=mat(random.randint(2,8,size=(2,5)) 产生一个2-8之间的随机整数矩阵 4.data3=mat(random.rand(2,2)) 这里的random模块使用的是num

  • 对python 矩阵转置transpose的实例讲解

    在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(path) arr_img = np.asarray(img, dtype='float64') arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb.再把这些元素一字排开 transpose是什么意识呢?

  • Python的numpy库中将矩阵转换为列表等函数的方法

    这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2

  • Python使用min、max函数查找二维数据矩阵中最小、最大值的方法

    本文实例讲述了Python使用min.max函数查找二维数据矩阵中最小.最大值的方法.分享给大家供大家参考,具体如下: 简单使用min.max函数来得到二维数据矩阵中的最大最小值,很简单,这是因为工作需要用到一个东西所以先简单来写了一下: #!usr/bin/env python #encoding:utf-8 ''''' __Author__:沂水寒城 功能:找出来随机生成矩阵中的最大.最小值 ''' import time import random def random_matrix_ge

  • Python获取二维矩阵每列最大值的方法

    因为做项目中间有一个很小的环节需要这个功能,所以就写了一个简单的小函数,下面是具体实现: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 ''' def get_max_value(martix): ''' 得到矩阵中每一列最大的值 ''' res_list=[] for j in range(len(martix[0])): one_list=[] for i in range(len(martix)): one_list.ap

  • python中numpy的矩阵、多维数组的用法

    1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

随机推荐