redis分布式锁的问题与解决方法

分布式锁

在分布式环境中,为了保证业务数据的正常访问,防止出现重复请求的问题,会使用分布式锁来阻拦后续请求。我们先写一段有问题的业务代码:

public void doSomething(String userId){
  User user=getUser(userId);
  if(user==null){
   user.setUserName("xxxxx");
   user.setUserId(userId);
   insert(user);
   return;
  }
  update(user);
 }

上面的代码很简单,查询db中有没有对应的user数据,如果有的话,执行更新操作,如果没有则插入。

我们知道,上面的代码是线程不安全的,在多线程的环境中,就会出现问题。为了能够保证数据的正确性,在单机环境下,我们可以使用synchronized的方法,来保证线程安全,具体修改:

public synchronized void doSomething(String userId){
  User user=getUser(userId);
  if(user==null){
   user.setUserName("xxxxx");
   user.setUserId(userId);
   insert(user);
   return;
  }
  update(user);
 }

在单机器的环境下,能够解决线程安全的问题,那在分布式环境下呢? 这个时候需要用到分布式锁.

分布式锁需要借助其他组件来实现,常用的有redis和zookeeper。下面我们就用redis的实现,来说明下问题,分布式锁具体的实现方法如下

public void doSomething(String userId){
  String lock=RedisUtils.get("xxxx"+userId);
  if(StringUtils.isNotEmpty(lock)){//说明当前userId已经被锁定
   return;
  }
  RedisUtils.set("xxxx"+userId,userId,1000);//锁定10s
  User user=getUser(userId);
  if(user==null){
   insert(user);
   RedisUtils.delete("xxxx"+userId);
   return;
  }
  update(user);
  RedisUtils.delete("xxxx"+userId);

 }

上面的代码解决了在分布式环境中的并发的问题。但同样需要考虑一个问题,如果insert操作和update操作异常了,分布式锁不会释放,后续的请求还会被拦截。

所以我们再优化,增加对异常的捕获。

public void doSomething(String userId){
  try {
    String lock=RedisUtils.get("xxxx"+userId);
    if(StringUtils.isNotEmpty(lock)){//说明当前userId已经被锁定
     return;
    }
    RedisUtils.set("xxxx"+userId,userId,1000);//锁定1s
    User user=getUser(userId);
    if(user==null){
     insert(user);
     return;
    }
    update(user);
  }
  catch(Exception ex){

  }
  finally{
   RedisUtils.delete("xxxx"+userId);
  }
 }

现在即使是程序异常了,锁会自动释放。但redis的get和set也会存在并发问题,我们再继续优化,使用redis中的setnx方法

public void doSomething(String userId){
  try {
    boolean lock=RedisUtils.setnx("xxxx"+userId,userId,1000);//锁定1s
    if(!lock){//说明当前userId已经被锁定
     return;
    }
    User user=getUser(userId);
    if(user==null){
     insert(user);
     return;
    }
    update(user);
  }
  catch(Exception ex){

  }
  finally{
   RedisUtils.delete("xxxx"+userId);
  }
 }

上面的代码好像没有什么问题了,但也存在很大的隐患。 我们分析下,假设第一个请求过来,执行锁定成功,程序开始运行,但是insert和update操作阻塞了1s,第二个请求过来,锁的缓存已经过期,第二个执行锁定成功,这个时候第一个请求完成了锁被释放,第二个请求的锁就被第一次请求释放了,第三次的请求就会造成线程不安全问题。

怎么再去优化呢?问题主要是出现在第一次请求误删锁的问题,所以我们在移除锁的时候要判断能否移除。

思路:我们在锁定的时候,value使用当前的时间戳,删除时判断是否过期如果不过期就不要删除,具体代码如下:

public void doSomething(String userId){
  try {
    boolean lock=RedisUtils.setnx("xxxx"+userId,LocalDateTime.now(),1000);//锁定10s
    if(!lock){//说明当前userId已经被锁定
     return;
    }
    User user=getUser(userId);
    if(user==null){
     insert(user);
     return;
    }
    update(user);
  }
  catch(Exception ex){

  }
  finally{
   LocalDateTime lockTIme= RedisUtils.get("xxxx"+userId);
   if(lockTIme.compare(LocalDateTime.now())<0){
    //说明已经过期,可以删除key
    RedisUtils.delete("xxxx"+userId);
   }
  }
 }

这样即使出现阻塞,第二次的时间戳覆盖了第一次的锁定,这样即使第一次完成了,也不会释放锁。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • 详解Java如何实现基于Redis的分布式锁

    前言 单JVM内同步好办, 直接用JDK提供的锁就可以了,但是跨进程同步靠这个肯定是不可能的,这种情况下肯定要借助第三方,我这里实现用Redis,当然还有很多其他的实现方式.其实基于Redis实现的原理还算比较简单的,在看代码之前建议大家先去看看原理,看懂了之后看代码应该就容易理解了. 我这里不实现JDK的java.util.concurrent.locks.Lock接口,而是自定义一个,因为JDK的有个newCondition方法我这里暂时没实现.这个Lock提供了5个lock方法的变体,可以

  • redis中使用java脚本实现分布式锁

    redis被大量用在分布式的环境中,自然而然分布式环境下的锁如何解决,立马成为一个问题.例如我们当前的手游项目,服务器端是按业务模块划分服务器的,有应用服,战斗服等,但是这两个vm都有可能同时改变玩家的属性,这如果在同一个vm下面,就很容易加锁,但如果在分布式环境下就没那么容易了,当然利用redis现有的功能也有解决办法,比如redis的脚本. redis在2.6以后的版本中增加了Lua脚本的功能,可以通过eval命令,直接在RedisServer环境中执行Lua脚本,并且可以在Lua脚本中调用

  • 深入理解redis分布式锁和消息队列

    最近博主在看redis的时候发现了两种redis使用方式,与之前redis作为缓存不同,利用的是redis可设置key的有效时间和redis的BRPOP命令. 分布式锁 由于目前一些编程语言,如PHP等,不能在内存中使用锁,或者如Java这样的,需要一下更为简单的锁校验的时候,redis分布式锁的使用就足够满足了. redis的分布式锁其实就是基于setnx方法和redis对key可设置有效时间的功能来实现的.基本用法比较简单. public boolean tryLock(String loc

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • Redis构建分布式锁

    1.前言 为什么要构建锁呢?因为构建合适的锁可以在高并发下能够保持数据的一致性,即客户端在执行连贯的命令时上锁的数据不会被别的客户端的更改而发生错误.同时还能够保证命令执行的成功率. 看到这里你不禁要问redis中不是有事务操作么?事务操作不能够实现上面的功能么? 的确,redis中的事务可以watch可以监控数据,从而能够保证连贯执行的时数据的一致性,但是我们必须清楚的认识到,在多个客户端同时处理相同的数据的时候,很容易导致事务的执行失败,甚至会导致数据的出错. 在关系型数据库中,用户首先向数

  • Redis数据库中实现分布式锁的方法

    分布式锁是一个在很多环境中非常有用的原语,它是不同进程互斥操作共享资源的唯一方法.有很多的开发库和博客描述如何使用Redis实现DLM(Distributed Lock Manager),但是每个开发库使用不同的方式,而且相比更复杂的设计与实现,很多库使用一些简单低可靠的方式来实现. 这篇文章尝试提供更标准的算法来使用Redis实现分布式锁.我们提出一种算法,叫做Relock,它实现了我们认为比vanilla单一实例方式更安全的DLM(分布式锁管理).我们希望社区分析它并提供反馈,以做为更加复杂

  • 详解使用Redis SETNX 命令实现分布式锁

    使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法. SETNX命令简介 命令格式 SETNX key value 将 key 的值设为 value,当且仅当 key 不存在. 若给定的 key 已经存在,则 SETNX 不做任何动作. SETNX 是SET if Not eXists的简写. 返回值 返回整数,具体为 - 1,当 key 的值被设置 - 0,当 key 的值没被设置 例子 redis> SETNX mykey "hello" (integer

  • java基于jedisLock—redis分布式锁实现示例代码

    分布式锁是啥? 单机锁的概念:我们正常跑的单机项目(也就是在tomcat下跑一个项目不配置集群)想要在高并发的时候加锁很容易就可以搞定,java提供了很多的机制例如:synchronized.volatile.ReentrantLock等锁的机制. 为啥需要分布式锁:当我们的项目比较庞大的时候,单机版的项目已经不能满足吞吐量的需求了,需要对项目做负载均衡,有可能还需要对项目进行解耦拆分成不同的服务,那么肯定是做成分布式的项目,分布式的项目因为是不同的程序控制,所以使用java提供的锁并不能完全保

  • Redis上实现分布式锁以提高性能的方案研究

    背景: 在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部分是解决方案基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系. 项目实践 任务队列用到分布式锁的情况比较多,在将业务逻辑中可以异步处理的操作放入队列,在其他线程中处理后出队,此时队列中使用了分布式锁,保证入队和出队的一致性.关于redis队列这块的逻辑分析,我将在下一次对其进行总结,此处先略过. 接下来对redis实现的分

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

随机推荐