深入全排列算法及其实现方法

全排列在很多程序都有应用,是一个很常见的算法,常规的算法是一种递归的算法,这种算法的得到基于以下的分析思路。  给定一个具有n个元素的集合(n>=1),要求输出这个集合中元素的所有可能的排列。
一、递归实现
例如,如果集合是{a,b,c},那么这个集合中元素的所有排列是{(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)},显然,给定n个元素共有n!种不同的排列,如果给定集合是{a,b,c,d},可以用下面给出的简单算法产生其所有排列,即集合(a,b,c,d)的所有排列有下面的排列组成:
(1)以a开头后面跟着(b,c,d)的排列
(2)以b开头后面跟着(a,c,d)的排列
(3)以c开头后面跟着(a,b,d)的排列
(4)以d开头后面跟着(a,b,c)的排列,这显然是一种递归的思路,于是我们得到了以下的实现:


代码如下:

#include "iostream"
using namespace std;
void permutation(char* a,int k,int m)
{
 int i,j;
 if(k == m)
 {
  for(i=0;i<=m;i++)
   cout<<a[i];
  cout<<endl;
 }
 else
 {
  for(j=k;j<=m;j++)
  {
   swap(a[j],a[k]);
   permutation(a,k+1,m);
   swap(a[j],a[k]);
  }
 }
}
int main(void)
{
 char a[] = "abc";
 cout<<a<<"所有全排列的结果为:"<<endl;
 permutation(a,0,2);
 system("pause");
 return 0;
}

二、STL实现
有时候递归的效率使得我们不得不考虑除此之外的其他实现,很多把递归算法转换到非递归形式的算法是比较难的,这个时候我们不要忘记了标准模板库已经实现的那些算法,这让我们非常轻松。STL有一个函数next_permutation(),它的作用是如果对于一个序列,存在按照字典排序后这个排列的下一个排列,那么就返回true且产生这个排列,否则返回false。注意,为了产生全排列,这个序列要是有序的,也就是说要调用一次sort。实现很简单,我们看一下代码:


代码如下:

#include "iostream"
#include "algorithm"
using namespace std;
void permutation(char* str,int length)
{
 sort(str,str+length);
 do
 {
  for(int i=0;i<length;i++)
   cout<<str[i];
  cout<<endl;
 }while(next_permutation(str,str+length));
}
int main(void)
{
 char str[] = "acb";
 cout<<str<<"所有全排列的结果为:"<<endl;
 permutation(str,3);
 system("pause");
 return 0;
}

三、有一定约束条件的全排列
对数1,2,3,4,5要实现全排序。要求4必须在3的左边,其它的数位置随意。
思路:首先使用上面的2种方法之一实现全排列,然后对全排列进行筛选,筛选出4在3左边的排列。


代码如下:

#include "iostream"
#include "algorithm"
using namespace std;
void permutation(int* a,int length)
{
 int i,flag;
 sort(a,a+length);
 do
 {
  for(i=0;i<length;i++)
  {
   if(a[i]==3)
    flag=1;
   else if(a[i]==4)             //如果3在4的左边,执行完代码,flag就是2
    flag=2;
  }
  if(flag==1)          //如果4在3的左边,执行完代码,flag就是1
  {
   for(i=0;i<length;i++)
    cout<<a[i];
   cout<<endl;
  }
 }while(next_permutation(a,a+length));
}
int main(void)
{
 int i,a[5];
 for(i=0;i<5;i++)
  a[i]=i+1;
 printf("%d以内所有4在3左边的全排列结果为:\n",i);
 permutation(a,5);
 system("pause");
 return 0;
}

(0)

相关推荐

  • 全排列算法的非递归实现与递归实现的方法(C++)

    (一)非递归全排列算法基本思想是:    1.找到所有排列中最小的一个排列P.    2.找到刚刚好比P大比其它都小的排列Q,    3.循环执行第二步,直到找到一个最大的排列,算法结束.下面用数学的方法描述:给定已知序列 P =  A1A2A3An ( Ai!=Aj , (1<=i<=n  , 1<=j<=n, i != j  ) )找到P的一个最小排列Pmin = P1P2P3Pn  有  Pi > P(i-1) (1 < i <= n)从Pmin开始,总是目

  • 使用C++实现全排列算法的方法详解

    复制代码 代码如下: <P>不论是哪种全排列生成算法,都遵循着"原排列"→"原中介数"→"新中介数"→"新排列"的过程.</P><P>其中中介数依据算法的不同会的到递增进位制数和递减进位制数.</P><P>关于排列和中介数的一一对应性的证明我们不做讨论,这里仅仅给出了排列和中介数的详细映射方法.</P> · 递增进位制和递减进位制数  所谓递增进位制和递减

  • JavaScript全排列的六种算法 具体实现

    全排列是一种时间复杂度为:O(n!)的算法,前两天给学生讲课,无意间想到这个问题,回来总结了一下,可以由7种算法求解,其中动态循环类似回溯算法,实现起来比较繁琐,故总结了6种,以飨读者.所有算法均使用JavaScript编写,可直接运行.算法一:交换(递归) 复制代码 代码如下: <html xmlns="http://www.w3.org/1999/xhtml">  <head>      <meta http-equiv="Content-T

  • php全排列递归算法代码

    算法原理如果用P表示n个元素的全排列,而Pi表示n个元素中不包含元素i的全排列,(i)Pi表示在排列Pi前面加上前缀i的排列,那么n个元素的全排列可递归定义为:    ① 如果n=1,则排列P只有一个元素i:    ② 如果n>1,则全排列P由排列(i)Pi构成:根据定义,可以看出如果已经生成(k-1)个元素的排列Pi,那么k个元素的排列可以在每个Pi前面加上元素i而生成.代码实现 复制代码 代码如下: function rank($base, $temp=null){    $len = st

  • js实现字符全排列算法的简单方法

    实例如下: <!doctype html> <html lang="en"> <head> <meta charset="UTF-8"> <title>字符全排列</title> </head> <body> <script> function charsMap(o){ o = (o+"").replace(/(\w)(?=\w*\1)/g

  • 深入全排列算法及其实现方法

    全排列在很多程序都有应用,是一个很常见的算法,常规的算法是一种递归的算法,这种算法的得到基于以下的分析思路.  给定一个具有n个元素的集合(n>=1),要求输出这个集合中元素的所有可能的排列.一.递归实现例如,如果集合是{a,b,c},那么这个集合中元素的所有排列是{(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)},显然,给定n个元素共有n!种不同的排列,如果给定集合是{a,b,c,d},可以用下面给出的简单算法产生其所有排列,即集合(a,b,c,

  • C语言实现全排列算法模板的方法

    程序的主要思路是: 1.把第1个数换到最前面来(本来就在最前面),准备打印1xx,再对后两个数2和3做全排列. 2.把第2个数换到最前面来,准备打印2xx,再对后两个数1和3做全排列. 3.把第3个数换到最前面来,准备打印3xx,再对后两个数1和2做全排列. 可见这是一个递归的过程,把对整个序列做全排列的问题归结为对它的子序列做全排列的问题,注意我没有描述Base Case怎么处理,你需要自己想.你的程序要具有通用性,如果改变了N和数组a的定义(比如改成4个数的数组),其它代码不需要修改就可以做

  • 全排列算法-递归与字典序的实现方法(Java)

    全排列算法-递归与字典序的实现方法(Java) 全排列: 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列. 例如: 1 .2 .3三个元素的全排列为: {1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}. ------------------------------------------------------ 解法1(递归) 如下图:要对1.2.3.4进行

  • Python字符串的全排列算法实例详解

    本文实例讲述了Python字符串的全排列算法.分享给大家供大家参考,具体如下: 题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述 输入一个字符串,长度不超过9(可能有字符重复),字符只包括大小写字母. 注意有可能重复,因此需要判断 注意list的append方法和list的+方法的区别 append方法在list后面添加元素 +方法在list后面添加l

  • JAVA用递归实现全排列算法的示例代码

    求一个n阶行列式,一个比较简单的方法就是使用全排列的方法,那么简述以下全排列算法的递归实现. 首先举一个简单的例子说明算法的原理,既然是递归,首先说明一下出口条件.以[1, 2]为例 首先展示一下主要代码(完整代码在后面),然后简述 //对数组array从索引为start到最后的元素进行全排列 public void perm(int[]array,int start) { if(start==array.length) { //出口条件 for(int i=0;i<array.length;i

  • 基于私钥加密公钥解密的RSA算法C#实现方法

    本文实例讲述了基于私钥加密公钥解密的RSA算法C#实现方法,是一种应用十分广泛的算法.分享给大家供大家参考之用.具体方法如下: 一.概述 RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作. RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一.RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价. RSA的安全性依赖于大数分解.公钥和私钥都是两个大素数( 大于 1

  • C++简单实现的全排列算法示例

    本文实例讲述了C++简单实现的全排列算法.分享给大家供大家参考,具体如下: #include "stdafx.h" #include <string> #include <algorithm> #include <iostream> void func(const char *str_in) { std::string str(str_in); std::sort(str.begin(),str.end()); do { std::cout<&

随机推荐