C/C++语言中结构体的内存分配小例子

当未用 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度对齐;当使用了 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度和 #pragma 指令指定的位数中的较小值对齐。

#pragma 指令格式如下所示:
#pragma pack(4)     // 或者 #pragma pack(push, 4)

举例如下:(机器字长为 32 位)
    struct
    {
        char a;
    }test;
    printf("%d/n", sizeof test);

打印出来的结果为 1;

struct
    {
        char a;
        short b;
        char c;
    }test;
    printf("%d/n", sizeof test);

打印出来的结果为 6;

struct
    {
        char a;
        int b;
        char c;
    }test;
    printf("%d/n", sizeof test);

打印出来的结果为 12;

struct
    {
        char a;
        double b;
        char c;
    }test;
    printf("%d/n", sizeof test);

打印出来的结果为 24;

#pragma pack(4)
    struct
    {
        char a;
        double b;
        char c;
    }test;
    printf("%d/n", sizeof test);

打印出来的结果为 16;

(0)

相关推荐

  • 关于C++内存中字节对齐问题的详细介绍

    一.什么是字节对齐计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐. 二.对齐的作用和原因:1.平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的:某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常.各个硬件平台对存储空间的处理上有很大的不同.一些平台对某些特定类型

  • C++动态分配和撤销内存以及结构体类型作为函数参数

    C++动态分配内存(new)和撤销内存(delete) 在软件开发过程中,常常需要动态地分配和撤销内存空间,例如对动态链表中结点的插入与删除.在C语言中是利用库函数malloc和free来分配和撤销内存空间的.C++提供了较简便而功能较强的运算符new和delete来取代malloc和free函数. 注意: new和delete是运算符,不是函数,因此执行效率高. 虽然为了与C语言兼容,C++仍保留malloc和free函数,但建议用户不用malloc和free函数,而用new和delete运算

  • C++对象内存分布详解(包括字节对齐和虚函数表)

    1.C++对象的内存分布和虚函数表: C++对象的内存分布和虚函数表注意,对象中保存的是虚函数表指针,而不是虚函数表,虚函数表在编译阶段就已经生成,同类的不同对象中的虚函数指针指向同一个虚函数表,不同类对象的虚函数指针指向不同虚函数表. 2.何时进行动态绑定: (1)每个类对象在被构造时不用去关心是否有其他类从自己派生,也不需要关心自己是否从其他类派生,只要按照一个统一的流程:在自身的构造函数执行之前把自己所属类(即当前构造函数所属的类)的虚函数表的地址绑定到当前对象上(一般是保存在对象内存空间

  • C语言、C++内存对齐问题详解

    这也可以? 复制代码 代码如下: #include <iostream> using namespace std;   struct Test_A {      char a;      char b;      int c; };   struct Test_B {      char a;      int c;      char b; };   struct Test_C {      int c;      char a;      char b; };   int main() {

  • C++面试题之结构体内存对齐计算问题总结大全

    前言 本文给大家介绍的是关于C++结构体内存对齐计算的相关内容,内存对齐计算可谓是笔试题的必考题,但是如何按照计算原则算出正确答案一开始也不是很容易的事,所以专门通过例子来复习下关于结构体内存对齐的计算问题.话不多说,来一起看看详细介绍吧. 编译环境:vs2015 对齐原则: 原则1:数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个

  • 深入理解c/c++ 内存对齐

    内存对齐,memory alignment.为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐.原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:然而,对齐的内存访问仅需要一次访问.内存对齐一般讲就是cpu access memory的效率(提高运行速度)和准确性(在一些条件下,如果没有对齐会导致数据不同步现象).依赖cpu,平台和编译器的不同.一些cpu要求较高(这句话说的不准确,但是确实依赖cpu的不同),而有些平台已经优化内存对齐问题,不同编译器的对齐模数不同.总

  • C++中的内存对齐实例详解

    C++中的内存对齐实例详解 内存对齐 在我们的程序中,数据结构还有变量等等都需要占有内存,在很多系统中,它都要求内存分配的时候要对齐,这样做的好处就是可以提高访问内存的速度. 我们还是先来看一段简单的程序: 程序一 #include <iostream> using namespace std; struct X1 { int i;//4个字节 char c1;//1个字节 char c2;//1个字节 }; struct X2 { char c1;//1个字节 int i;//4个字节 ch

  • C/C++语言中结构体的内存分配小例子

    当未用 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度对齐:当使用了 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度和 #pragma 指令指定的位数中的较小值对齐. #pragma 指令格式如下所示:#pragma pack(4)     // 或者 #pragma pack(push, 4) 举例如下:(机器字长为 32 位)    struct    {        char a;    }test;    printf("%d

  • C语言中结构体与内存对齐实例解析

    1.结构体类型 C语言中的2种类型:原生类型和自定义类型,结构体类型是一种自定义类型. 2.结构体使用时先定义结构体类型再用类型定义变量 -> 结构体定义时需要先定义结构体类型,然后再用类型来定义变量. -> 也可以在定义结构体类型的同时定义结构体变量. // 定义类型 struct people { char name[20]; int age; }; // 定义类型的同时定义变量. struct student { char name[20]; int age; }s1; // 将类型st

  • C语言中结构体的内存对齐规则讲解

    目录 1.结构体的内存对齐规则 2.例子 3.为什么存在内存对齐 4.如何修改默认对齐数 1.结构体的内存对齐规则 1.第一个成员在与结构体变量偏移量为0的地址处. 2.其他成员变量都放在对齐数(成员的大小和默认对齐数的较小值)的整数倍的地址处. 对齐数=编译器默认的一个对齐数与该成员大小的较小值.(VS中默认的对齐数是8) 3.结构体总大小为最大对齐数(每个成员变量都有一个对齐数 )的整数倍. 4.如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最

  • C语言中结构体、联合体的成员内存对齐情况

    前言 最近项目进行中,遇到一个小问题,在数据协议传输过程中,我为了方便解析,就定义了一个结构体,在数据的指针传入函数的时候,我用定义好的结构体进行强制转化,没想到一直解析失败,调试很久,终于反应过来,在用结构体指针对数据强制转换时,定义结构体我没有注意到数据对齐,因为在底层实现中,我传入的数据buffer是排列整齐的,而强制转化的结构体格式中,我定义的时候没有使用__attribute__((__packed__))或者__packed强制数据对齐,导致结构体成员真实排列会按照成员中最大的变量的

  • C语言程序中结构体的内存对齐详解

    目录 一.为什么存在内存对齐 二.结构体的内存对齐四规则 三.举例 一.为什么存在内存对齐 1.平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的:某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常. 2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐. 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:而对齐的内存访问仅需要一次访问. 总的来说结构体的内存对齐是拿空间来换取时间的做法. 二.结构体的内存对齐四规则 默认情况:默认的对

  • 详解C语言中结构体的使用

    目录 结构体的声明 结构体成员的类型 结构体成员的访问 结构体的声明 结构体的定义:结构体是一些值的集合,这些值称为成员变量,结构体的每个成员可以是不同类型的变量. 举例: //定义结构体类型 struct tag//struct结构体关键字 tag结构体标签 struct tag结构体类型 { //成员变量 char name[20]; short age; char telphone[12]; char sex[5]; }s1,s2,s3;//s1,s2,s3是三个全局结构体变量 int m

  • 详解C语言中结构体(struct)的用法

    目录 粉丝问答 三种结构体类型变量说明 1. 先定义结构,再定义结构变量 2. 定义结构体类型的同时说明变量 3. 直接说明结构变量 结构体成员表示方法 结构体指针做参数 结构体初始化 定义变量的同时初始化 先定义在初始化 常用初始化 typedef与struct 前置声明 结构体对齐 粉丝问答 有个粉丝在群里问了这样一个问题,问题在图中已经标出,如下图. DQuestsion 头文件的结构体的定义为: typedef struct{ u8 bmRequestType; u8 bRequest;

  • Go语言中结构体方法副本传参与指针传参的区别介绍

    GO语言结构体方法跟结构体指针方法的区别 首先,我定了三个接口.一个结构和三个方法: type DeptModeA interface { Name() string SetName(name string) } type DeptModeB interface { Relocate(building string, floor uint8) } type Dept struct { name string building string floor uint8 Key string } fun

  • C语言中结构体和共用体实例教程

    目录 一.实验目的 二.实验内容 三.实验记录 3.1 候选人选票统计 3.2 print函数 3.3 链表 总结 一.实验目的 掌握结构体类型变量的定义和使用: 掌握结构体类型数组的概念和应用: 掌握链表的概念,初步学会对链表进行操作: 掌握共用体的概念与使用: 掌握指向结构体变量的指针. 掌握指向结构体数组的指针的应用. 二.实验内容 编写下列程序,然后上机调试运行. 对候选人得票的统计程序.设有3个候选人,每次输入一个得票的候选人的名字,要求最后输出各人得票结果. 编写一个函数print,

  • C语言中结构体实例解析

    目录 一.结构体定义 二.实例演示 结构体作为函数参数 结构体指针 三.typedef struct 和 struct的区别 1.声明不同 2.访问成员变量不同 3.重新定义不同 总结 一.结构体定义 C语言结构体由一系列相同或者不同类型的数据构成的集合,结构体类型就是以struct关键字定义的数据类型. 结构体的格式如下: struct 结构名称 { 结构体所包含的数据成员,包括变量数组等 } 结构变量 ;//结构变量可以指定一个或多个 举例: struct Student { char na

随机推荐