浅谈Node框架接入ELK实践总结

我们都有过上机器查日志的经历,当集群数量增多的时候,这种原始的操作带来的低效率不仅给我们定位现网问题带来极大的挑战,同时,我们也无法对我们服务框架的各项指标进行有效的量化诊断,更无从谈有针对性的优化和改进。这个时候,构建具备信息查找,服务诊断,数据分析等功能的实时日志监控系统尤为重要。

ELK (ELK Stack: ElasticSearch, LogStash, Kibana, Beats) 是一套成熟的日志解决方案,其开源及高性能在各大公司广泛使用。而我们业务所使用的服务框架,如何接入 ELK 系统呢?

业务背景

我们的业务框架背景:

  • 业务框架是基于 NodeJs 的 WebServer
  • 服务使用 winston 日志模块将日志本地化
  • 服务产生的日志存储在各自机器的磁盘上
  • 服务部署在不同地域多台机器

我们将整个框架接入 ELK 简单归纳为下面几个步骤:

  • 日志结构设计:由传统的纯文本日志改成结构化对象并输出为 JSON.
  • 日志采集:在框架请求生命周期的一些关键节点输出日志
  • ES 索引模版定义:建立 JSON 到 ES 实际存储的映射

一、日志结构设计

传统的,我们在做日志输出的时候,是直接输出日志的等级(level)和日志的内容字符串(message)。然而我们不仅关注什么时间,发生了什么,可能还需要关注类似的日志发生了多少次,日志的细节与上下文,以及关联的日志。 因此我们不只是简单地将我们的日志结构化一下为对象,还要提取出日志关键的字段。

1. 将日志抽象为事件

我们将每一条日志的发生都抽像为一个事件。事件包含:

事件元字段

  • 事件发生时间:datetime, timestamp
  • 事件等级:level, 例如: ERROR, INFO, WARNING, DEBUG
  • 事件名称: event, 例如:client-request
  • 事件发生的相对时间(单位:纳秒):reqLife, 此字段为事件相对请求开始发生的时间(间隔)
  • 事件发生的位置: line,代码位置; server, 服务器的位置

请求元字段

  • 请求唯一ID: reqId, 此字段贯穿整个请求链路上发生的所有事件
  • 请求用户ID: reqUid, 此字段为用户标识,可以跟踪用户的访问或请求链路

数据字段

不同类型的事件,需要输出的细节不尽相同,我们将这些细节(非元字段)统一放到d -- data,之中。使我们的事件结构更加清晰,同时,也能避免数据字段对元字段造成污染。

e.g. 如 client-init事件,该事件会在每次服务器接收到用户请求时打印,我们将用户的 ip, url等事件独有的统一归为数据字段放到 d 对象中

举个完整的例子

{
  "datetime":"2018-11-07 21:38:09.271",
  "timestamp":1541597889271,
  "level":"INFO",
  "event":"client-init",
  "reqId":"rJtT5we6Q",
  "reqLife":5874,
  "reqUid": "999793fc03eda86",
  "d":{
    "url":"/",
    "ip":"9.9.9.9",
    "httpVersion":"1.1",
    "method":"GET",
    "userAgent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36",
    "headers":"*"
  },
  "browser":"{"name":"Chrome","version":"70.0.3538.77","major":"70"}",
  "engine":"{"version":"537.36","name":"WebKit"}",
  "os":"{"name":"Mac OS","version":"10.14.0"}",
  "content":"(Empty)",
  "line":"middlewares/foo.js:14",
  "server":"127.0.0.1"
}

一些字段,如:browser, os, engine为什么在外层 有时候我们希望日志尽量扁平(最大深度为2),以避免 ES 不必要的索引带来的性能损耗。在实际输出的时候,我们会将深度大于1的值输出为字符串。而有时候一些对象字段是我们关注的,所以我们将这些特殊字段放在外层,以保证输出深度不大于2的原则。

一般的,我们在打印输出日志的时候,只须关注事件名称数据字段即可。其他,我们可以在打印日志的方法中,通过访问上下文统一获取,计算,输出。

2. 日志改造输出

前面我们提到了如何定义一个日志事件, 那么,我们如何基于已有日志方案做升级,同时,兼容旧代码的日志调用方式。

升级关键节点的日志

// 改造前
logger.info('client-init => ' + JSON.stringfiy({
  url,
  ip,
  browser,
  //...
}));

// 改造后
logger.info({
  event: 'client-init',
  url,
  ip,
  browser,
  //...
});

兼容旧的日志调用方式

logger.debug('checkLogin');

因为 winston 的 日志方法本身就支持 string 或者 object 的传入方式, 所以对于旧的字符串传入写法,formatter 接收到的实际上是{ level: 'debug', message: 'checkLogin' }。formatter 是 winston 的日志输出前调整日志格式的一道工序, 这一点使我们在日志输出前有机会将这类调用方式输出的日志,转为一个纯输出事件 -- 我们称它们为raw-log事件,而不需要修改调用方式。

改造日志输出格式

前面提到 winston 输出日志前,会经过我们预定义的formatter,因此除了兼容逻辑的处理外,我们可以将一些公共逻辑统一放在这里处理。而调用上,我们只关注字段本身即可。

  • 元字段提取及处理
  • 字段长度控制
  • 兼容逻辑处理

如何提取元字段,这里涉及上下文的创建与使用,这里简单介绍一下 domain 的创建与使用。

//--- middlewares/http-context.js
const domain = require('domain');
const shortid = require('shortid');

module.exports = (req, res, next) => {
  const d = domain.create();
  d.id = shortid.generate(); // reqId;
  d.req = req;

  //...

  res.on('finish', () => process.nextTick(() => {
    d.id = null;
    d.req = null;
    d.exit();
  });

  d.run(() => next());
}

//--- app.js
app.use(require('./middlewares/http-context.js'));

//--- formatter.js
if (process.domain) {
  reqId = process.domain.id;
}

这样,我们就可以将 reqId 输出到一次请求中所有的事件, 从而达到关联事件的目的。

二、日志采集

现在,我们知道怎么输出一个事件了,那么下一步,我们该考虑两个问题:

  1. 我们要在哪里输出事件?
  2. 事件要输出什么细节?

换句话说,整个请求链路中,哪些节点是我们关注的,出现问题,可以通过哪个节点的信息快速定位到问题?除此之外,我们还可以通过哪些节点的数据做统计分析?

结合一般常见的请求链路(用户请求,服务侧接收请求,服务请求下游服务器/数据库(*多次),数据聚合渲染,服务响应),如下方的流程图

流程图

那么,我们可以这样定义我们的事件:

用户请求

  • client-init: 打印于框架接收到请求(未解析), 包括:请求地址,请求头,Http 版本和方法,用户 IP 和 浏览器
  • client-request: 打印于框架接收到请求(已解析),包括:请求地址,请求头,Cookie, 请求包体
  • client-response: 打印于框架返回请求,包括:请求地址,响应码,响应头,响应包体

下游依赖

  • http-start: 打印于请求下游起始:请求地址,请求包体,模块别名(方便基于名字聚合而且域名)
  • http-success: 打印于请求返回 200:请求地址,请求包体,响应包体(code & msg & data),耗时
  • http-error: 打印于请求返回非 200,亦即连接服务器失败:请求地址,请求包体,响应包体(code & message & stack),耗时。
  • http-timeout: 打印于请求连接超时:请求地址,请求包体,响应包体(code & msg & stack),耗时。

字段这么多,该怎么选择? 一言以蔽之,事件输出的字段原则就是:输出你关注的,方便检索的,方便后期聚合的字段。

一些建议

请求下游的请求体和返回体有固定格式, e.g. 输入:{ action: 'getUserInfo', payload: {} } 输出: { code: 0, msg: '', data: {}} 我们可以在事件输出 action,code 等,以便后期通过 action 检索某模块具体某个接口的各项指标和聚合。

一些原则

保证输出字段类型一致 由于所有事件都存储在同一个 ES 索引, 因此,相同字段不管是相同事件还是不同事件,都应该保持一致,例如:code不应该既是数字,又是字符串,这样可能会产生字段冲突,导致某些记录(document)无法被冲突字段检索到。ES 存储类型为 keyword, 不应该超过ES mapping 设定的 ignore_above 中指定的字节数(默认4096个字节)。否则同样可能会产生无法被检索的情况三、ES 索引模版定义

这里引入 ES 的两个概念,映射(Mapping)与模版(Template)。

首先,ES 基本的存储类型大概枚举下,有以下几种

  • String: keyword & text
  • Numeric: long, integer, double
  • Date: date
  • Boolean: boolean

一般的,我们不需要显示指定每个事件字段的在ES对应的存储类型,ES 会自动根据字段第一次出现的document中的值来决定这个字段在这个索引中的存储类型。但有时候,我们需要显示指定某些字段的存储类型,这个时候我们需要定义这个索引的 Mapping, 来告诉 ES 这此字段如何存储以及如何索引。

e.g.

还记得事件元字段中有一个字段为 timestamp ?实际上,我们输出的时候,timestamp 的值是一个数字,它表示跟距离 1970/01/01 00:00:00 的毫秒数,而我们期望它在ES的存储类型为 date 类型方便后期的检索和可视化, 那么我们创建索引的时候,指定我们的Mapping。

PUT my_logs
{
 "mappings": {
  "_doc": {
   "properties": {
    "title":  {
      "type": "date",
      "format": "epoch_millis"
     },
   }
  }
 }
}

但一般的,我们可能会按日期自动生成我们的日志索引,假定我们的索引名称格式为 my_logs_yyyyMMdd (e.g. my_logs_20181030)。那么我们需要定义一个模板(Template),这个模板会在(匹配的)索引创建时自动应用预设好的 Mapping。

PUT _template/my_logs_template
{
 "index_patterns": "my_logs*",
 "mappings": {
  "_doc": {
   "properties": {
    "title":  {
      "type": "date",
      "format": "epoch_millis"
     },
   }
  }
 }
}

提示:将所有日期产生的日志都存在一张索引中,不仅带来不必要的性能开销,也不利于定期删除比较久远的日志。

小结

至此,日志改造及接入的准备工作都已经完成了,我们只须在机器上安装 FileBeat -- 一个轻量级的文件日志Agent, 它负责将日志文件中的日志传输到 ELK。接下来,我们便可使用 Kibana 快速的检索我们的日志。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Nodejs Express 通过log4js写日志到Logstash(ELK)

    Log4j 是一个使用 Java 语言编写的,可靠.快速.灵活的日志框架(API),使用 Apache Software License 授权.它被移植到 C.C++.C#.Perl.Python.Ruby 和 Eiffel 语言中. Log4j 是高度可配置的,在运行期使用外部的配置文件对其进行配置.它按照优先级别记录日志,并可将日志信息定向输出到各种介质,比如数据库.文件.控制台.Unix Syslog等. Log4j 主要由三部分组成: loggers:负责采集日志信息. appender

  • 浅谈Node框架接入ELK实践总结

    我们都有过上机器查日志的经历,当集群数量增多的时候,这种原始的操作带来的低效率不仅给我们定位现网问题带来极大的挑战,同时,我们也无法对我们服务框架的各项指标进行有效的量化诊断,更无从谈有针对性的优化和改进.这个时候,构建具备信息查找,服务诊断,数据分析等功能的实时日志监控系统尤为重要. ELK (ELK Stack: ElasticSearch, LogStash, Kibana, Beats) 是一套成熟的日志解决方案,其开源及高性能在各大公司广泛使用.而我们业务所使用的服务框架,如何接入 E

  • 浅谈Node.js ORM框架Sequlize之表间关系

    Sequelize模型之间存在关联关系,这些关系代表了数据库中对应表之间的主/外键关系.基于模型关系可以实现关联表之间的连接查询.更新.删除等操作.本文将通过一个示例,介绍模型的定义,创建模型关联关系,模型与关联关系同步数据库,及关系模型的增.删.改.查操作. 数据库中的表之间存在一定的关联关系,表之间的关系基于主/外键进行关联.创建约束等.关系表中的数据分为1对1(1:1).1对多(1:M).多对多(N:M)三种关联关系. 在Sequelize中建立关联关系,通过调用模型(源模型)的belon

  • 浅谈Gin框架中bind的使用

    目录 概述 Binding接口 context.Bind cnotext.MustBindWith ShouldBindWith context.BindJSON context.ShouldBindJSON context.ShouldBindUri() context.ShouldBindUri() 运行结果 总结 概述 Gin框架中,有bind函数可以非常方便的将url的查询参数query parameter.http的Header,body中提交上来的数据格式,如form,json,xm

  • 浅谈SSH框架中spring的原理

    在ssh项目中,是有明确分工的,spring的作用就相当于将struts和hibernate连接起来,是将两个没有关系的框架的特性,方法,action都放在spring的配置文件中使他们建立关系.取他门各自所长.而这些做法他们自己不知道,他们是听命于spring调度的,他的的任务只是做好自己的事情. 这样做的好处就是任务结构分明,struts只管理显示与做什么,hibernate只关心怎么做,而spring就相当于领导,所以一切的类都要交给spring的工厂创建,这是一种良好的开发模式,体现了一

  • 浅谈jQuery框架Ajax常用选项

    json(JavaScript Object Notation):轻量级的数据交换(交换的数据转换成与平台无关的)格式 java对象转换成json字符串,使用ObjectMapper类的writeValueAsString(java对象); 将json字符串或者json对象组成的数组字符串转成javascript对象使用javascript内置对象JSON提供的parse函数 $.ajax()方法 $.ajax({ url:请求地址(相对), type:请求类型, data:请求参数(可以字符串

  • 浅谈MUI框架中加载外部网页或服务器数据的方法

    我们很多同学在实施使用MUI框架的时候,在打开新的页面的时候常使用的方式是:mui.openwindow的方法,然而遇到网页需要从服务器或者是要嵌套外部的网页的时候,由于网速的问题会遇到加载时出现白屏,等待时间过长,导致用户体验不好. 页面加载的时候使用plus.webview.create方法就很好的解决了这个问题. 废话不多说直接贴代码 首先我们需要在创建一个父页面,以下是父页面的JS // H5 plus事件处理 function plusReady(){ var nwaiting = p

  • 浅谈layui框架自带分页和表格重载的接口解析问题

    首先要了解框架分页自带的参数有哪些,特别是注意参数名称要和后台一致! **需要注意的是layui框架的数据解析格式问题,data必须是个数组对象的形式才能正常解析否则会很麻烦(亲测过非正常解析,手写js手动动态添加表格) data 格式例如: { "count": 11, "code": 0, "msg": "", "data": [ { "id": "1", &qu

  • 浅谈laravel框架sql中groupBy之后排序的问题

    最近在用框架给公司App写接口时,碰到了一个棘手的问题: 对查询结果进行排序并进行分页(进行了简略修改),下面是最终结果代码: $example = Example::select(DB::raw('max(id) as some_id,this_id')) ->where('id', $id) ->groupBy('this_id') ->orderBy('some_id', 'desc') ->skip($offset) ->take($limit) ->get()

  • 浅谈laravel框架与thinkPHP框架的区别

    主要区别:(thinkPHP更适合国人的编码习惯) 1.渲染模版方式的不同: 在Laravel框架里,使用return view()来渲染模版; 而ThinkPHP里则使用了$this->display()的方式渲染模版; 2.在Laravel框架里,由于其考虑到了跨站请求伪造, 所以如果使用form表单以post方式进行传值时,如果不再form表单中加入{{csrf_field()}}则会报出TokenMethodnotfound的语法错误; 而TP框架则需要自己手动完成防止跨站攻击的代码;

  • 浅谈Scrapy框架普通反爬虫机制的应对策略

    简单低级的爬虫速度快,伪装度低,如果没有反爬机制,它们可以很快的抓取大量数据,甚至因为请求过多,造成服务器不能正常工作.而伪装度高的爬虫爬取速度慢,对服务器造成的负担也相对较小. 爬虫与反爬虫,这相爱相杀的一对,简直可以写出一部壮观的斗争史.而在大数据时代,数据就是金钱,很多企业都为自己的网站运用了反爬虫机制,防止网页上的数据被爬虫爬走.然而,如果反爬机制过于严格,可能会误伤到真正的用户请求;如果既要和爬虫死磕,又要保证很低的误伤率,那么又会加大研发的成本. 简单低级的爬虫速度快,伪装度低,如果

随机推荐