Python中Numpy mat的使用详解

前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似。(mat与matrix等同)

基本操作

>>> m= np.mat([1,2,3]) #创建矩阵
>>> m
matrix([[1, 2, 3]])

>>> m[0]        #取一行
matrix([[1, 2, 3]])
>>> m[0,1]       #第一行,第2个数据
2
>>> m[0][1]       #注意不能像数组那样取值了
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
  out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1

#将Python的列表转换成NumPy的矩阵
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])

#Numpy dnarray转换成Numpy矩阵
>>> n = np.array([1,2,3])
>>> n
array([1, 2, 3])
>>> np.mat(n)
matrix([[1, 2, 3]])

#排序
>>> m=np.mat([[2,5,1],[4,6,2]])  #创建2行3列矩阵
>>> m
matrix([[2, 5, 1],
    [4, 6, 2]])
>>> m.sort()          #对每一行进行排序
>>> m
matrix([[1, 2, 5],
    [2, 4, 6]])

>>> m.shape           #获得矩阵的行列数
(2, 3)
>>> m.shape[0]         #获得矩阵的行数
2
>>> m.shape[1]         #获得矩阵的列数
3

#索引取值
>>> m[1,:]           #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1]          #第一行第0个元素,注意左闭右开
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])

矩阵求逆、行列式

与Numpy array相同,可参考链接。

矩阵乘法

矩阵乘,与Numpy dnarray类似,可以使用np.dot()和np.matmul(),除此之外,由于matrix中重载了“*”,因此“*”也能用于矩阵乘。

>>> a = np.mat([[1,2,3], [2,3,4]])
>>> b = np.mat([[1,2], [3,4], [5,6]])
>>> a
matrix([[1, 2, 3],
    [2, 3, 4]])
>>> b
matrix([[1, 2],
    [3, 4],
    [5, 6]])
>>> a * b     #方法一
matrix([[22, 28],
    [31, 40]])
>>> np.matmul(a, b)  #方法二
matrix([[22, 28],
    [31, 40]])
>>> np.dot(a, b)   #方法三
matrix([[22, 28],
    [31, 40]])

点乘,只剩下multiply方法了。

>>> a = np.mat([[1,2], [3,4]])
>>> b = np.mat([[2,2], [3,3]])
>>> np.multiply(a, b)
matrix([[ 2, 4],
    [ 9, 12]])

矩阵转置

转置有两种方法:

>>> a
matrix([[1, 2],
    [3, 4]])
>>> a.T      #方法一,ndarray也行
matrix([[1, 3],
    [2, 4]])
>>> np.transpose(a)  #方法二
matrix([[1, 3],
    [2, 4]])

值得一提的是,matrix中求逆还有一种简便方法(ndarray中不行):

>>> a
matrix([[1, 2],
    [3, 4]])
>>> a.I
matrix([[-2. , 1. ],
    [ 1.5, -0.5]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python安装numpy&安装matplotlib& scipy的教程

    numpy安装 下载地址:https://pypi.python.org/pypi/numpy(各取所需) copy安装目录.eg:鄙人的D:\python3.6.1\Scripts pip install :eg: win+R ----->  CMD ---->    pip install D:\python3.6.1\Scripts\numpy-1.13.0rc2-cp36-none-win_amd64.whl 安装成功: 同理: 安装matplotlib 安装scipy 以上这篇pyt

  • 详解Python中的Numpy、SciPy、MatPlotLib安装与配置

    用Python来编写机器学习方面的代码是相当简单的,因为Python下有很多关于机器学习的库.其中下面三个库numpy,scipy,matplotlib,scikit-learn是常用组合,分别是科学计算包,科学工具集,画图工具包,机器学习工具集. numpy :主要用来做一些科学运算,主要是矩阵的运算.NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组.它将常用的数学函数都进行数组化,使得这些数学函数能够直接对数组进行操作,将本来需要在Python级别进行的循

  • Python+matplotlib+numpy绘制精美的条形统计图

    本文实例主要向大家分享了一个Python+matplotlib+numpy绘制精美的条形统计图的代码,效果展示如下: 完整代码如下: import matplotlib.pyplot as plt from numpy import arange from numpy.random import rand def gbar(ax, x, y, width=0.5, bottom=0): X = [[.6, .6], [.7, .7]] for left, top in zip(x, y): ri

  • numpy matrix和array的乘和加实例

    1. 对于数组array 乘 就是对应位置的元素相乘: X1 = np.array([[1,2], [3, 4]]) X2 = X1 print X2*X1 [[ 1 4] [ 9 16]] 加 就是对应位置的相加: X1 = np.array([[1,2], [3, 4]]) X2 = X1 print X2+X1 [[2 4] [6 8]] 2. 对于矩阵matrix 乘 就是矩阵的点乘: X1 = np.matrix([[1,2], [3, 4]]) X2 = X1 print X2*X1

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • Python+matplotlib+numpy实现在不同平面的二维条形图

    在不同平面上绘制二维条形图. 本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等. 演示结果: 完整代码: from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) fig = plt.figure() ax = fig.a

  • 利用matplotlib+numpy绘制多种绘图的方法实例

    前言 matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.本文将以例子的形式分析matplot中支持的,分析中常用的几种图.其中包括填充图.散点图(scatter plots).. 条形图(bar plots).等高线图(contour plots). 点阵图和3D图,下面来一起看看详细的介绍: 一.填充图 参考代码 from matplotlib.pyplot import * x=linspace(-3,3,100) y

  • Python安装Numpy和matplotlib的方法(推荐)

    Python安装Numpy和matplotlib的方法(推荐) 注意: 下载的库名中cp27代表python2.7,其它同理. 在shell中输入import pip; print(pip.pep425tags.get_supported())可以获取到pip支持的文件名还有版本 ================安装Numpy==================== 下载地址: https://pypi.python.org/pypi/numpy  类似 numpy-1.13.3-cp36-no

  • Python中Numpy mat的使用详解

    前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似.(mat与matrix等同) 基本操作 >>> m= np.mat([1,2,3]) #创建矩阵 >>> m matrix([[1, 2, 3]]) >>> m[0] #取一行 matrix([[1, 2, 3]]) >>> m[0,1] #第一行,第2个数据 2 >>> m[0][1] #注意不能像数组那样取值了 Trace

  • Python中Numpy ndarray的使用详解

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数组 >>> import numpy as np >>> m = np.array([[1,2,3], [2,3,4]]) #定义矩阵,int64 >>> m array([[1, 2, 3], [2, 3, 4]]) >>> m = n

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • Python中np.random.randint()参数详解及用法实例

    目录 可实现功能: np.random.randint() 根据参数中所指定的范围生成随机 整数. 参数 一.基础用法 二.高级用法 总结 可实现功能: 1.随机生成一个整数. 2.随机生成任意范围内的一个整数. 3.随机生成指定长度的整数组 4.随机生成指定长度的任意范围的整数组 5.随机生成指定长度的多维整数组 6.随机生成指定长度的任意范围的多维整数组 np.random.randint() 根据参数中所指定的范围生成随机 整数. numpy.random.randint(low, hig

  • 基于python中的TCP及UDP(详解)

    python中是通过套接字即socket来实现UDP及TCP通信的.有两种套接字面向连接的及无连接的,也就是TCP套接字及UDP套接字. TCP通信模型 创建TCP服务器 伪代码: ss = socket() # 创建服务器套接字 ss.bind() # 套接字与地址绑定 ss.listen() # 监听连接 inf_loop: # 服务器无限循环 cs = ss.accept() # 接受客户端连接 comm_loop: # 通信循环 cs.recv()/cs.send() # 对话(接收/发

  • python中模块的__all__属性详解

    python模块中的__all__属性,可用于模块导入时限制,如: from module import * 此时被导入模块若定义了__all__属性,则只有__all__内指定的属性.方法.类可被导入. 若没定义,则导入模块内的所有公有属性,方法和类 # kk.py class A(): def __init__(self,name,age): self.name=name self.age=age class B(): def __init__(self,name,id): self.nam

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

  • Python中%r和%s的详解及区别

    Python中%r和%s的详解 %r用rper()方法处理对象 %s用str()方法处理对象 有些情况下,两者处理的结果是一样的,比如说处理int型对象. 例一: print "I am %d years old." % 22 print "I am %s years old." % 22 print "I am %r years old." % 22 返回结果: I am 22 years old. I am 22 years old. I a

  • Python中的变量和作用域详解

    作用域介绍 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量: E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的: G:globa,全局变量,就是模块级别定义的变量: B:built-in,系统固定模块里面的变量,比如int, bytearray等. 搜索变量的优先级顺序依次是:作用域局部>外层作用域>当前模块中的全局>python内置作用域,也就是LEGB. x = int(2.9) # int bu

  • Python中协程用法代码详解

    本文研究的主要是python中协程的相关问题,具体介绍如下. Num01–>协程的定义 协程,又称微线程,纤程.英文名Coroutine. 首先我们得知道协程是啥?协程其实可以认为是比线程更小的执行单元. 为啥说他是一个执行单元,因为他自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. Num02–>协程和线程的差异 那么这个过程看起来和线程差不多.其实不然, 线程切换从系统层面远不止保存和恢复 CP

随机推荐