Python语言描述机器学习之Logistic回归算法

本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类。Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们需要根据输入数据的特征值(数值型)的大小来判断数据是某种分类或者不是某种分类。

一、样本数据

在我们的例子中,我们有这样一些样本数据:

样本数据有3个特征值:X0X0,X1X1,X2X2

我们通过这3个特征值中的X1X1和X2X2来判断数据是否符合要求,即符合要求的为1,不符合要求的为0。

样本数据分类存放在一个数组中

我们在logRegres.py文件中编写如下函数来准备数据,并将数据打印观察一下:

#coding=utf-8
from numpy import *
def loadDataSet():
 dataMat = []; labelMat = []
 fr = open('testSet.txt')
 for line in fr.readlines():
  lineArr = line.strip().split()
  dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
  labelMat.append(int(lineArr[2]))
 return dataMat,labelMat
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 print 'dataMat:\n',dataMat

我们来观察一下这个数据样本:

dataMat:
[[1.0, -0.017612, 14.053064], [1.0, -1.395634, 4.662541], [1.0, -0.752157, 6.53862], [1.0, -1.322371, 7.152853], [1.0, 0.423363, 11.054677], [1.0, 0.406704, 7.067335], [1.0, 0.667394, 12.741452], [1.0, -2.46015, 6.866805], [1.0, 0.569411, 9.548755], [1.0, -0.026632, 10.427743], [1.0, 0.850433, 6.920334], [1.0, 1.347183, 13.1755], [1.0, 1.176813, 3.16702], [1.0, -1.781871, 9.097953], [1.0, -0.566606, 5.749003], [1.0, 0.931635, 1.589505], [1.0, -0.024205, 6.151823], [1.0, -0.036453, 2.690988], [1.0, -0.196949, 0.444165], [1.0, 1.014459, 5.754399], [1.0, 1.985298, 3.230619], [1.0, -1.693453, -0.55754], [1.0, -0.576525, 11.778922], [1.0, -0.346811, -1.67873], [1.0, -2.124484, 2.672471], [1.0, 1.217916, 9.597015], [1.0, -0.733928, 9.098687], [1.0, -3.642001, -1.618087], [1.0, 0.315985, 3.523953], [1.0, 1.416614, 9.619232], [1.0, -0.386323, 3.989286], [1.0, 0.556921, 8.294984], [1.0, 1.224863, 11.58736], [1.0, -1.347803, -2.406051], [1.0, 1.196604, 4.951851], [1.0, 0.275221, 9.543647], [1.0, 0.470575, 9.332488], [1.0, -1.889567, 9.542662], [1.0, -1.527893, 12.150579], [1.0, -1.185247, 11.309318], [1.0, -0.445678, 3.297303], [1.0, 1.042222, 6.105155], [1.0, -0.618787, 10.320986], [1.0, 1.152083, 0.548467], [1.0, 0.828534, 2.676045], [1.0, -1.237728, 10.549033], [1.0, -0.683565, -2.166125], [1.0, 0.229456, 5.921938], [1.0, -0.959885, 11.555336], [1.0, 0.492911, 10.993324], [1.0, 0.184992, 8.721488], [1.0, -0.355715, 10.325976], [1.0, -0.397822, 8.058397], [1.0, 0.824839, 13.730343], [1.0, 1.507278, 5.027866], [1.0, 0.099671, 6.835839], [1.0, -0.344008, 10.717485], [1.0, 1.785928, 7.718645], [1.0, -0.918801, 11.560217], [1.0, -0.364009, 4.7473], [1.0, -0.841722, 4.119083], [1.0, 0.490426, 1.960539], [1.0, -0.007194, 9.075792], [1.0, 0.356107, 12.447863], [1.0, 0.342578, 12.281162], [1.0, -0.810823, -1.466018], [1.0, 2.530777, 6.476801], [1.0, 1.296683, 11.607559], [1.0, 0.475487, 12.040035], [1.0, -0.783277, 11.009725], [1.0, 0.074798, 11.02365], [1.0, -1.337472, 0.468339], [1.0, -0.102781, 13.763651], [1.0, -0.147324, 2.874846], [1.0, 0.518389, 9.887035], [1.0, 1.015399, 7.571882], [1.0, -1.658086, -0.027255], [1.0, 1.319944, 2.171228], [1.0, 2.056216, 5.019981], [1.0, -0.851633, 4.375691], [1.0, -1.510047, 6.061992], [1.0, -1.076637, -3.181888], [1.0, 1.821096, 10.28399], [1.0, 3.01015, 8.401766], [1.0, -1.099458, 1.688274], [1.0, -0.834872, -1.733869], [1.0, -0.846637, 3.849075], [1.0, 1.400102, 12.628781], [1.0, 1.752842, 5.468166], [1.0, 0.078557, 0.059736], [1.0, 0.089392, -0.7153], [1.0, 1.825662, 12.693808], [1.0, 0.197445, 9.744638], [1.0, 0.126117, 0.922311], [1.0, -0.679797, 1.22053], [1.0, 0.677983, 2.556666], [1.0, 0.761349, 10.693862], [1.0, -2.168791, 0.143632], [1.0, 1.38861, 9.341997], [1.0, 0.317029, 14.739025]]
labelMat:
[0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0]

样本数据dataMat的第一列,也就是我们的特征值X0X0全部为1,这个问题我们之后在计算回归参数时需要注意理解。所有的样本数据一共100条,对应的分类结果也是100个。

那么,我们现在的问题是:
我们要找到样本空间中的特征值与分类结果的关系。设计一个函数或者功能,实现在输入一组特征值后,能够根据样本空间特征值与分类结果的关系,自动为输入的数据进行分类,即得到结果要么是1,要么是0。

二、Sigmoid函数

为了解决上一节我们提到的问题,我们这里先介绍一下Sigmoid函数:

这个函数有如下几个特征:

当z=0z=0时,值为0.50.5
当zz不断增大时,值将趋近于1
当zz不断减小时,值将趋近于0
我们来看一下函数的曲线图:

我们如果将样本空间的3个特征值X0X0、X1X1和X2X2的值代入到函数中,计算出一个结果。那么这个结果将是接近与我们的分类结果的(0到1之间的一个数值)。如果这个结果接近0那么我们就认为分类为0,如果结果接近1我们就认为分类为1。

以什么方式代入到函数中呢?其实简单的相加就可以,因为zz不断增大或者减小时,函数的值就相应的趋近于1或者0。我们使z=x0+x1+x2z=x0+x1+x2

但是实际的情况是我们的计算结果和实际的分类值,会有误差,甚至是完全不正确。为了矫正这个问题,我们为样本空间的3个特征值X0X0、X1X1和X2X2,一一定义一个回归系数w0w0、w1w1和w2w2,使这个误差减小。即使z=w0x0+w1x1+w2x2

其实不难想象,这组ww回归系数的值决定了我们计算结果的准确性,甚至是正确性。也就是说,这组ww的值反应了样本空间分类的规则。
那么,我们在输入一组样本之外的数据时,配合正确的ww回归系数,我们就能得到比较接近样本空间分类规则的分类结果。
问题又来了,我们怎么来得到这样一组ww回归系数呢?

三、梯度上升法

梯度上升法,是在函数的梯度方向上,不断的迭代计算参数值,以找到一个最大的参数值。迭代公式如下:

其中,αα为步长,Δσ(w)Δσ(w)为σ(w)σ(w)函数梯度。关于梯度的推导请参考这里。作者的数学能力有限,就不做说明了。

最后,我们可以得到梯度的计算公式:

那么,迭代公式如下:

公式说明:

wk+1wk+1为本次迭代XX特征项的回归系数结果
wkwk为上一次迭代XX特征项的回归系数结果
αα为每次迭代向梯度方向移动的步长
xixi为XX特征项中第i个元素
yiyi是样本中第i条记录的分类样本结果
σ(xi,wk)σ(xi,wk)是样本中第i条记录,使用sigmoid函数和wkwk作为回归系数计算的分类结果
[yi−σ(xi,wk)][yi−σ(xi,wk)]是样本第i条记录对应的分类结果值,与sigmoid函数使用wkwk作为回归系数计算的分类结果值的误差值。

现在,我们有了计算回归系数的公式,下面我们在logRegres.py文件中来实现一个函数,实现计算样本空间的回归系数,并打印一下我们的结果:

def gradAscent(dataMatIn, classLabels):
 dataMatrix = mat(dataMatIn)    #100行3列
 #print dataMatrix
 labelMat = mat(classLabels).transpose() #100行1列
 #print 'labelMat:\n',labelMat
 print 'labelMat 的形状:rowNum=',shape(labelMat)[0],'colNum=',shape(labelMat)[1]
 rowNum,colNum = shape(dataMatrix)
 alpha = 0.001
 maxCycles = 500
 weights = ones((colNum,1)) #3行1列
 #print shape(dataMatrix)
 #print shape(weights)
 #print shape(labelMat)
 for k in range(maxCycles):    #heavy on matrix operations
  h = sigmoid(dataMatrix*weights)  #100行1列
  #print h
  error = (labelMat - h)    #vector subtraction
  weights = weights + alpha * dataMatrix.transpose()* error #3行1列
 return weights
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 #weights=gradAscent(dataMat,labelMat)
 #print 'dataMat:\n',dataMat
 #print 'labelMat:\n',labelMat
 print weights

打印结果:

回归系数:
[[ 4.12414349]
 [ 0.48007329]
 [-0.6168482 ]]

为了验证我们计算的回顾系数的准确性,我们观察一下样本空间的散点图和回归系数的拟合曲线。我们以z(x1,x2)=w0+w1x1+w2x2作为我们的拟合函数,在坐标系中画出它的拟合曲线。以样本空间中X1X1和X2X2的值作为横坐标和纵坐标,画出样本空间的散点。代码如下:

def plotBestFit(weights):
 import matplotlib.pyplot as plt
 dataMat,labelMat=loadDataSet()
 dataArr = array(dataMat)
 n = shape(dataArr)[0]
 xcord1 = []; ycord1 = []
 xcord2 = []; ycord2 = []
 for i in range(n):
  if int(labelMat[i])== 1:
   xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
  else:
   xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
 fig = plt.figure()
 ax = fig.add_subplot(111)
 ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
 ax.scatter(xcord2, ycord2, s=30, c='green')
 x = arange(-3.0, 3.0, 0.1)
 y = (-weights[0]-weights[1]*x)/weights[2]
 y = y.transpose()
 ax.plot(x, y)
 plt.xlabel('X1'); plt.ylabel('X2');
 plt.show()
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 weights=gradAscent(dataMat,labelMat)
 print '回归系数:\n',weights
 plotBestFit(weights)

运行后,我们得到如下图片:

通过我们的观察,我们的这个回归系数的算法还是比较准确的,拟合曲线将样本数据分成两部分,并且符合样本的分类规则。

接下来,我们来实现一个分类器,并测试这个分类器:

def classify0(targetData,weights):
 v = sigmoid(targetData*weights)
 if v>0.5:
  return 1.0
 else :
  return 0
def testClassify0():
 dataMat,labelMat=loadDataSet()
 examPercent=0.7
 row,col=shape(dataMat)
 exam=[]
 exam_label=[]
 test=[]
 test_label=[]
 for i in range(row):
  if i < row*examPercent:
   exam.append(dataMat[i])
   exam_label.append(labelMat[i])
  else:
   test.append(dataMat[i])
   test_label.append(labelMat[i])
 weights=gradAscent(exam,exam_label)
 errCnt=0
 trow,tcol=shape(test)
 for i in range(trow):
  v=int(classify0(test[i],weights))
  if v != int(test_label[i]):
   errCnt += 1
   print '计算值:',v,' 原值',test_label[i]
 print '错误率:',errCnt/trow
if __name__=='__main__':
 #dataMat,labelMat=loadDataSet()
 #weights=gradAscent(dataMat,labelMat)
 ##print 'dataMat:\n',dataMat
 ##print 'labelMat:\n',labelMat
 #print '回归系数:\n',weights
 #plotBestFit(weights)
 testClassify0()

分类器的实现很简单。我们使用之前的样本数据中的70条数据作为我们测试的样本数据,计算出回归系数。然后用分类器对剩下的30条记录进行分类,然后将结果和样本数据进行对比。最后打印出错误率。我们可以看到,错误率是0,近乎完美!我们可以修改测试样本在原样本空间的比例多测试几遍。那么,结论是我们的算法的准确率还不错!

那么,到这里问题就解决了吗?好像还差一点什么。我们来仔细研究一下我们计算回归系数的方法,不难发现,这个过程中我们用样本数据组成的矩阵进行了矩阵乘法。也就是说,为了计算回归系数,我们遍历了整个样本数据。

我们的问题又来了,我们例子中的样本数据只有100条,如果处理成千上万的样本数据,我们的计算回归系数的函数的计算复杂度会直线上升。下面我们来看看如何优化这个算法。

四、优化梯度上升算法——随机梯度上升法

我们在理解了回归系数迭代计算的公式

和我们实现的程序之后。我们将计算回归系数的方法进行如下改进:

def stocGradAscent0(dataMatrix, classLabels):
 m,n = shape(dataMatrix)
 alpha = 0.01
 weights = ones((n,1)) #initialize to all ones
 for i in range(m):
  h = sigmoid(sum(dataMatrix[i]*weights))
  error = classLabels[i] - h
  weights = weights + alpha * error * mat(dataMatrix[i]).transpose()
 return weights

每一次迭代计算回归系数时,只使用样本空间中的一个样本点来计算。我们通过程序生成一个样本散点和拟合曲线的图来看一下这个算法的准确程度:

不难看出跟之前的算法相差还是比较大的。原因是之前的算法是通过500次迭代算出的结果,后者只经过了100次迭代。那么这里要说明的问题是,回归系数在随着迭代次数的增加是趋于收敛的,并且收敛的过程是存在波动的。说白了,就是迭代的次数越多,越接近我们想要的那个值,但是由于样本的数据是非线性的,这个过程也会有一定的误差。具体的回归系数和迭代次数的关系大家可以参考一些教材,例如《机器学习实战》中的描述,这里就不做详细介绍了。
我们这里只介绍一下如何改进我们的算法,使我们的算法能够快速的收敛并减小波动。方法如下:

每次迭代随机的抽取一个样本点来计算回归向量
迭代的步长随着迭代次数增大而不断减少,但是永远不等于0

改进代码,并打印出拟合曲线和样本散点图:

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
 m,n = shape(dataMatrix)
 weights = ones((n,1)) #initialize to all ones
 for j in range(numIter):
  dataIndex = range(m)
  for i in range(m):
   alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
   randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
   h = sigmoid(sum(dataMatrix[randIndex]*weights))
   error = classLabels[randIndex] - h
   weights = weights + alpha * error * mat(dataMatrix[randIndex]).transpose()
   del(dataIndex[randIndex])
 return weights
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 #weights=stocGradAscent0(dataMat,labelMat)
 weights=stocGradAscent1(dataMat,labelMat)
 #weights=gradAscent(dataMat,labelMat)
 #print 'dataMat:\n',dataMat
 #print 'labelMat:\n',labelMat
 #print '回归系数:\n',weights
 plotBestFit(weights)
 #testClassify0()

默认是150迭代的样本散点图和拟合曲线图:

不难看出准确程度与第一个算法很接近了!

五、总结

Logistic回归算法主要是利用了Sgimoid函数来为数据分类,分类的准确的关键取决于从样本空间中计算出的回归系数。我们使用梯度上升法来计算回归系数,并采用随机梯度上升法来改进了算法的性能。

以上就是本文关于Python语言描述机器学习之Logistic回归算法的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他Python和算法相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • Python最火、R极具潜力 2017机器学习调查报告

    数据平台 Kaggle 近日发布了 2017 机器学习及数据科学调查报告,这也是 Kaggle 首次进行全行业调查.调查共收到超过 16000 份回复,受访内容包括最受欢迎的编程语言.不同国家数据科学家的平均年龄.不同国家的平均年薪等. 下面主要看看工具使用方面的结果.请注意,该报告包含多个国家的数据,可能存在收集不够全面的情况,仅供参考. 年龄 从全球范围来看,本次调查对象的平均年龄在 30 岁左右.当然,各个国家的数值会有差异,中国的机器学习从业者年龄的中位数是 25 岁. 全球全职工作者为

  • python机器学习实战之树回归详解

    本文实例为大家分享了树回归的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- #!/usr/bin/python ''''' 回归树 连续值回归预测 的 回归树 ''' # 测试代码 # import regTrees as RT RT.RtTreeTest() RT.RtTreeTest('ex0.txt') RT.RtTreeTest('ex2.txt') # import regTrees as RT RT.RtTreeTest('ex2.txt',ops=(

  • 机器学习经典算法-logistic回归代码详解

    一.算法简要 我们希望有这么一种函数:接受输入然后预测出类别,这样用于分类.这里,用到了数学中的sigmoid函数,sigmoid函数的具体表达式和函数图象如下: 可以较为清楚的看到,当输入的x小于0时,函数值<0.5,将分类预测为0:当输入的x大于0时,函数值>0.5,将分类预测为1. 1.1 预测函数的表示 1.2参数的求解 二.代码实现 函数sigmoid计算相应的函数值:gradAscent实现的batch-梯度上升,意思就是在每次迭代中所有数据集都考虑到了:而stoGradAscen

  • 机器学习python实战之手写数字识别

    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

  • 给你选择Python语言实现机器学习算法的三大理由

    基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰:(2) 易于操作纯文本文件:(3) 使用广泛,存在大量的开发文档. 可执行伪代码 Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code).默认安装的Python开发环境已经附带了很多高级数据类型,如列表.元组.字典.集合.队列等,无需进一步编程就可以使用这些数据类型的操作.使用这些数据类型使得实现抽象的数学概念非常简单.此外,读者还可以使用自己

  • 机器学习的框架偏向于Python的13个原因

    13个机器学习的框架偏向于Python的原因,供大家参考,具体内容如下 前言 主要有以下原因: 1. Python是解释语言,程序写起来非常方便 写程序方便对做机器学习的人很重要. 因为经常需要对模型进行各种各样的修改,这在编译语言里很可能是牵一发而动全身的事情,Python里通常可以用很少的时间实现. 举例来说,在C等编译语言里写一个矩阵乘法,需要自己分配操作数(矩阵)的内存.分配结果的内存.手动对BLAS接口调用gemm.最后如果没用smart pointer还得手动回收内存空间.Pytho

  • python机器学习库常用汇总

    汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱. 1. Python网页爬虫工具集 一个真实的项目,一定是从获取数据开始的.无论文本处理,机器学习和数据挖掘,都需要数据,除了通过一些渠道购买或者下载的专业数据外,常常需要大家自己动手爬数据,这个时候,爬虫就显得格外重要了,幸好,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,也就从这里开始了: 1.1 Scrapy 鼎鼎大名的Scrapy,相信不少同学都有耳闻,课程图谱中的很多课

  • Python机器学习之决策树算法实例详解

    本文实例讲述了Python机器学习之决策树算法.分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树.决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则.决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据.缺点为:可能产生过度匹配的问题.决策树适于处理离散型和连续型的数据. 在决策树中最重要的就是如何选取

  • Python语言描述机器学习之Logistic回归算法

    本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类.Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们需要根据输入数据的特征值(数值型)的大小来判断数据是某种分类或者不是某种分类. 一.样本数据 在我们的例子中,我们有这样一些样本数据: 样本数据有3个特征值:X0X0,X1X1,X2X2 我们通过这3个特征值中的X1X1和X2X2来判断数据是否符合要求,即符合要求的为1,不符合要求的为0. 样本数据分类存放在一个

  • Python语言实现机器学习的K-近邻算法

    写在前面 额...最近开始学习机器学习嘛,网上找到一本关于机器学习的书籍,名字叫做<机器学习实战>.很巧的是,这本书里的算法是用Python语言实现的,刚好之前我学过一些Python基础知识,所以这本书对于我来说,无疑是雪中送炭啊.接下来,我还是给大家讲讲实际的东西吧. 什么是K-近邻算法? 简单的说,K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类.它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系

  • Python语言描述KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可

  • Python语言描述随机梯度下降法

    1.梯度下降 1)什么是梯度下降? 因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降. 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走? 先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因. 如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点.

  • Python语言描述最大连续子序列和

    求最大连续子序列的和是一个很经典很古老的面试题了,记得在刚毕业找工作面试那会也遇到过同款问题.今儿突然想起来,正好快到毕业季,又该是苦逼的应届生们各种面试的时候到了,就给写了一些小代码解决这个问题.也希望各位找工作的同志们都拿到心目中理想的offer,从此以后,战胜高富帅,赢取白富美,走上人生巅峰. 1.问题描述 假设有一数组(python里为list啦)[1,3,-3,4,-6,-1],求数组中最大连续子序列的和.例如在此数组中,最大连续子序列的和为5,即1+3+(-3)+4 = 5 2.O(

  • Python语言描述连续子数组的最大和

    题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止).你会不会被他忽悠住?(子向量的长度至少是1) 思路: 最大和连续子数组一定有如下几个特点: 1.第一个不为负数 2.如果前面数的累加值

  • Python使用sklearn实现的各种回归算法示例

    本文实例讲述了Python使用sklearn实现的各种回归算法.分享给大家供大家参考,具体如下: 使用sklearn做各种回归 基本回归:线性.决策树.SVM.KNN 集成方法:随机森林.Adaboost.GradientBoosting.Bagging.ExtraTrees 1. 数据准备 为了实验用,我自己写了一个二元函数,y=0.5*np.sin(x1)+ 0.5*np.cos(x2)+0.1*x1+3.其中x1的取值范围是0~50,x2的取值范围是-10~10,x1和x2的训练集一共有5

  • Python机器学习logistic回归代码解析

    本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下. Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数 拟合.插值和逼近是数值分析的三大工具 回归:对一直公式的位置参数进行估计 拟合:把平面上的一些系列点,用一条光滑曲线连接起来 logistic主要思想:根据现有数据对分类边界线建立回归公式.以此进行分类 sigmoid函数:在神经网络中它是所谓的激励函数.当输入大于0时,输出趋向于1,输入小于0时,输出趋向0

  • 用tensorflow实现弹性网络回归算法

    本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下 python代码: #用tensorflow实现弹性网络算法(多变量) #使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征. #1 导入必要的编程库,创建计算图,加载数据集 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets from tensor

随机推荐