python队列通信:rabbitMQ的使用(实例讲解)

(一)、前言

为什么引入消息队列?

1.程序解耦

2.提升性能

3.降低多业务逻辑复杂度

(二)、python操作rabbit mq

rabbitmq配置安装基本使用参见上节文章,不再复述。

若想使用python操作rabbitmq,需安装pika模块,直接pip安装:

pip install pika

1.最简单的rabbitmq producer端与consumer端对话:

producer:

#Author :ywq
import pika
auth=pika.PlainCredentials('ywq','qwe') #save auth indo
connection = pika.BlockingConnection(pika.ConnectionParameters(
  '192.168.0.158',5672,'/',auth)) #connect to rabbit
channel = connection.channel() #create channel
channel.queue_declare(queue='hello') #declare queue
#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',
   routing_key='hello',
   body='Hello World!') #the body is the msg content
print(" [x] Sent 'Hello World!'")
connection.close()

consumer:

#Author :ywq
import pika
auth=pika.PlainCredentials('ywq','qwe') #auth info
connection = pika.BlockingConnection(pika.ConnectionParameters(
  '192.168.0.158',5672,'/',auth)) #connect to rabbit
channel = connection.channel()  #create channel

channel.queue_declare(queue='hello') #decalre queue
def callback(ch, method, properties, body):
 print(" [x] Received %r" % body)

channel.basic_consume(callback,
   queue='hello',
   no_ack=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

消息传递消费过程中,可以在rabbit web管理页面实时查看队列消息信息。

2.持久化的消息队列,避免宕机等意外情况造成消息队列丢失。

consumer端无需改变,在producer端代码内加上两个属性,分别使消息持久化、队列持久化,只选其一还是会出现消息丢失,必须同时开启:

delivery_mode=2 #make msg persisdent
durable=True

属性插入位置见如下代码(producer端):

#Author :ywq
import pika,sys
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
  '192.168.0.158',5672,'/',auth_info
 ))
channel=connection.channel()
channel.queue_declare(queue='test1',durable=True) #durable=Ture, make queue persistent

msg=''.join(sys.argv[1:]) or 'Hello'
channel.basic_publish(
 exchange='',
 routing_key='test1',
 body=msg,
 properties=pika.BasicProperties(
  delivery_mode=2 #make msg persisdent
 )
)

print('Send done:',msg)
connection.close()

3.公平分发

在多consumer的情况下,默认rabbit是轮询发送消息的,但有的consumer消费速度快,有的消费速度慢,为了资源使用更平衡,引入ack确认机制。consumer消费完消息后会给rabbit发送ack,一旦未ack的消息数量超过指定允许的数量,则不再往该consumer发送,改为发送给其他consumer。

producer端代码不用改变,需要给consumer端代码插入两个属性:

channel.basic_qos(prefetch_count= *) #define the max non_ack_count
channel.basic_ack(delivery_tag=deliver.delivery_tag) #send ack to rabbitmq

属性插入位置见如下代码(consumer端):

#Author :ywq
import pika,time
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
 )
)
channel=connection.channel()
channel.queue_declare(queue='test2',durable=True)
def callback(chann,deliver,properties,body):
 print('Recv:',body)
 time.sleep(5)
 chann.basic_ack(delivery_tag=deliver.delivery_tag) #send ack to rabbit
channel.basic_qos(prefetch_count=1)
'''
注意,no_ack=False 注意,这里的no_ack类型仅仅是告诉rabbit该消费者队列是否返回ack,若要返回ack,需要在callback内定义
prefetch_count=1,未ack的msg数量超过1个,则此consumer不再接受msg,此配置需写在channel.basic_consume上方,否则会造成non_ack情况出现。
'''
channel.basic_consume(
 callback,
 queue='test2'
)

channel.start_consuming()

三、消息发布/订阅

上方的几种模式都是producer端发送一次,则consumer端接收一次,能不能实现一个producer发送,多个关联的consumer同时接收呢?of course,rabbit支持消息发布订阅,共支持三种模式,通过组件exchange转发器,实现3种模式:

fanout: 所有bind到此exchange的queue都可以接收消息,类似广播。

direct: 通过routingKey和exchange决定的哪个唯一的queue可以接收消息,推送给绑定了该queue的consumer,类似组播。

topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息,类似前缀列表匹配路由。

1.fanout

publish端(producer):

#Author :ywq
import pika,sys,time
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
 )
)
channel=connection.channel()
channel.exchange_declare(exchange='hello',
    exchange_type='fanout'
    )
msg=''.join(sys.argv[1:]) or 'Hello world %s' %time.time()
channel.basic_publish(
 exchange='hello',
 routing_key='',
 body=msg,
 properties=pika.BasicProperties(
 delivery_mode=2
 )
)
print('send done')
connection.close()

subscribe端(consumer):

#Author :ywq
import pika
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
 )
)
channel=connection.channel()
channel.exchange_declare(
 exchange='hello',
 exchange_type='fanout'
)
random_num=channel.queue_declare(exclusive=True) #随机与rabbit建立一个queue,comsumer断开后,该queue立即删除释放
queue_name=random_num.method.queue
channel.basic_qos(prefetch_count=1)
channel.queue_bind(
 queue=queue_name,
 exchange='hello'
)
def callback(chann,deliver,properties,body):
 print('Recv:',body)
 chann.basic_ack(delivery_tag=deliver.delivery_tag) #send ack to rabbit

channel.basic_consume(
 callback,
 queue=queue_name,
)
channel.start_consuming()

实现producer一次发送,多个关联consumer接收。

使用exchange模式时:

1.producer端不再申明queue,直接申明exchange

2.consumer端仍需绑定队列并指定exchange来接收message

3.consumer最好创建随机queue,使用完后立即释放。

随机队列名在web下可以检测到:

2.direct

使用exchange同时consumer有选择性的接收消息。队列绑定关键字,producer将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列,consumer相应接收。即在fanout基础上增加了routing key.

producer:

#Author :ywq
import pika,sys
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
 )
)
channel=connection.channel()
channel.exchange_declare(exchange='direct_log',
   exchange_type='direct',
   )
while True:
 route_key=input('Input routing key:')
 msg=''.join(sys.argv[1:]) or 'Hello'
 channel.basic_publish(
 exchange='direct_log',
 routing_key=route_key,
 body=msg,
 properties=pika.BasicProperties(
  delivery_mode=2
 )
 )
connection.close()

consumer:

#Author :ywq
import pika,sys
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
))
channel=connection.channel()
channel.exchange_declare(
 exchange='direct_log',
 exchange_type='direct'
)
queue_num=channel.queue_declare(exclusive=True)
queue_name=queue_num.method.queue
route_key=input('Input routing key:')

channel.queue_bind(
 queue=queue_name,
 exchange='direct_log',
 routing_key=route_key
)
def callback(chann,deliver,property,body):
 print('Recv:[level:%s],[msg:%s]' %(route_key,body))
 chann.basic_ack(delivery_tag=deliver.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(
 callback,
 queue=queue_name
)
channel.start_consuming()

同时开启多个consumer,其中两个接收notice,两个接收warning,运行效果如下:

3.topic

相较于direct,topic能实现模糊匹配式工作方式(在consumer端指定匹配方式),只要routing key包含指定的关键字,则将该msg发往绑定的queue上。

rabbitmq通配符规则:

符号“#”匹配一个或多个词,符号“”匹配一个词。因此“abc.#”能够匹配到“abc.m.n”,但是“abc.*‘' 只会匹配到“abc.m”。‘.'号为分割符。使用通配符匹配时必须使用‘.'号分割。

producer:

#Author :ywq
import pika,sys
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
 )
)
channel=connection.channel()
channel.exchange_declare(exchange='topic_log',
   exchange_type='topic',
   )
while True:
 route_key=input('Input routing key:')
 msg=''.join(sys.argv[1:]) or 'Hello'
 channel.basic_publish(
 exchange='topic_log',
 routing_key=route_key,
 body=msg,
 properties=pika.BasicProperties(
  delivery_mode=2
 )
 )
connection.close()

consumer:

#Author :ywq
import pika,sys
auth_info=pika.PlainCredentials('ywq','qwe')
connection=pika.BlockingConnection(pika.ConnectionParameters(
 '192.168.0.158',5672,'/',auth_info
))
channel=connection.channel()
channel.exchange_declare(
 exchange='topic_log',
 exchange_type='topic'
)
queue_num=channel.queue_declare(exclusive=True)
queue_name=queue_num.method.queue
route_key=input('Input routing key:')

channel.queue_bind(
 queue=queue_name,
 exchange='topic_log',
 routing_key=route_key
)
def callback(chann,deliver,property,body):
 print('Recv:[type:%s],[msg:%s]' %(route_key,body))
 chann.basic_ack(delivery_tag=deliver.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(
 callback,
 queue=queue_name
)
channel.start_consuming()

运行效果:

rabbitmq三种publish/subscribe模型简单介绍完毕。

以上这篇python队列通信:rabbitMQ的使用(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 利用Python操作消息队列RabbitMQ的方法教程

    前言 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术.排队指的是应用程序通过 队列来通信.队列的使用除去了接收和发

  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回

    先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4 RabbitMQ服务器 sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库 sudo pip install pika 远程结果返回 消息发送端发送消息出去后没有结果返回.如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端. 处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队

  • python队列通信:rabbitMQ的使用(实例讲解)

    (一).前言 为什么引入消息队列? 1.程序解耦 2.提升性能 3.降低多业务逻辑复杂度 (二).python操作rabbit mq rabbitmq配置安装基本使用参见上节文章,不再复述. 若想使用python操作rabbitmq,需安装pika模块,直接pip安装: pip install pika 1.最简单的rabbitmq producer端与consumer端对话: producer: #Author :ywq import pika auth=pika.PlainCredentia

  • Python进程通信之匿名管道实例讲解

    匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描述符(r, w),表示可读的和可写的.示例代码如下: 复制代码 代码如下: #!/usr/bin/python import time import os def child(wpipe):     print('hello from child', os.getpid())     while True:   

  • python 调用c语言函数的实例讲解

    虽然python是万能的,但是对于某些特殊功能,需要c语言才能完成.这样,就需要用python来调用c的代码了 具体流程: c编写相关函数 ,编译成库 然后在python中加载这些库,指定调用函数. 这些函数可以char ,int, float, 还能返回指针. 以下示例: 通过python调用c函数,返回"hello,world 字符串" 新建c语言文件 hello.c touch hello.c #include <stdio.h> char *get_str() {

  • python数据结构链表之单向链表(实例讲解)

    单向链表 单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域.这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值. 表元素域elem用来存放具体的数据. 链接域next用来存放下一个节点的位置(python中的标识) 变量p指向链表的头节点(首节点)的位置,从p出发能找到表中的任意节点. 节点实现 class Node(object): """单链表的结点""" def __i

  • python密码错误三次锁定(实例讲解)

    程序需求: 输入用户名,密码 认证成功显示欢迎信息 输入错误三次后锁定用户 流程图: 好像画的不咋地 查看代码: #!/usr/bin/env python # _*_ coding:utf-8 _*_ # File_type:一个登录接口 # Author:smelond import os username = "smelond"#用户名 password = "qweqwe"#密码 counter = 0#计数器 #读取黑名单 file = os.path.e

  • python逐行读写txt文件的实例讲解

    实例如下所示: # -*-coding:utf-8-*- import os file_obj = open("test2.txt") all_lines = file_obj.readlines() for line in all_lines: print line file_obj.close() # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists("dest.txt"): os.remove("dest.txt"

  • 基于python requests库中的代理实例讲解

    直接上代码: #request代理(proxy) """ 1.启动代理服务器Heroku,相当于aliyun 2.在主机1080端口启动Socks 服务 3.将请求转发到1080端口 4.获取相应资源 首先要安装包pip install 'requests[socksv5]' """ import requests #定义一个代理服务器,所有的http及https都走socks5的协议,sock5相当于http协议,它是在会话层 #把它转到本机的

  • python清除字符串中间空格的实例讲解

    1.使用字符串函数replace >>> a = 'hello world' >>> a.replace(' ', '') 'helloworld' 看上这种方法真的是很笨. 2.使用字符串函数split >>> a = ''.join(a.split()) >>> print(a) helloworld 3.使用正则表达式 >>> import re >>> strinfo = re.compil

  • Python之批量创建文件的实例讲解

    批量创建文件其实很简单,只需要按照需要创建写文件.写完关闭当前写文件.创建新的写文件.写完关闭当前文件...不断循环即可,以下是一个简单例子,将大文件big.txt按照每1000行分割成一个个小文件. 具体做法如下: # -*- coding: utf-8 -*- index = 0 count = 0 f_in = open("%d.txt" % index, "w") with open("big.txt", "r") a

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

随机推荐